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摘要 

位渦蘊含平衡大氣中之熱力及動力資訊。在靜力平衡近似和水平平衡關係下，從位

渦場中可以得到平衡風場及溫度場，此種特性被稱為「位渦反演」。位渦反演涉及解橢

圓形偏微分方程，其反演結果是非局部的。若我們有位渦場，則可以有效的反演出平衡

動力以及熱力場。本研究探討地形約束下之等熵座標平衡運動，即等熵面與地形相交如

何影響平衡流場。其中「無質量層」方法幫助我們求解等熵面與地形相交需要的數學技

巧。 

本研究主要參考 Silvers and Schubert (2012) 和 Fulton et al. (2017) 對於二維線性平

衡模式的工作。我們延伸建立了等熵座標之二維線性平衡模型和三維線性與非線性平衡

模式。利用這些模式，我們重現了 Silvers and Schubert (2012)對低層噴流的動力研究，

在此之上並給予了地表加熱以及地形冷卻效應的量化分析，此外，我們也發現低層逆溫

層在不同等熵座標高度下，根據逆溫層是否碰觸地形，分別有增強或削弱低層噴流的強

度的效果。此外我們利用非線性平衡模式模擬類似於颱風結構的位渦場，並在中心上層

設置負位渦結構。結果顯示負位渦在強渦旋中心上層產生之壓力擾動往周圍擴散，但在

強渦旋中心則傾向垂直擴散。此外我們也利用 2020 年七月之月平均 ERA5 再分析資料

對於：1) 落磯山脈 2) 青康藏高原做位渦反演；利用 2015 年 7 月 20 日 00UTC-24UTC

之每小時 ERA5 再分析資料對於 3) 鄰近台灣之鋒面個案做位渦反演。落磯山脈的三

維位渦反演結果整體與觀測吻合，如反演場之低層噴流強度與延伸範圍皆與觀測十分吻

合。青康藏高原的三維位渦反演結果則能部分捕捉如索馬利噴流和高原東側南風等特徵。

此外，我們在落磯山脈的反演中分離上層與下層動力條件，其線性疊加後之結果與原反

演場幾乎一致，這顯示了位渦反演可用於分離特定位渦在地形附近對整體反演平衡場之

重要性。另一方面，台灣個案平衡模式中層大氣位渦反演的風速比起觀測的風速小約

16%，顯示在一天的時間尺度下平衡場在觀測場中的重要性。反演的低層西南風場展現

空間均勻性，風速區並往西南方向延伸，這特性和觀測一致，也顯示位渦動力的重要性。 
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本研究包含： 

1. 建構地形約束下之線性平衡與非線性平衡等熵座標平衡模式；模式可以在等熵座標

下處理地形與地表斜壓性 

2. 分析地表暖心結構以及地形冷卻作用，得出兩者對於低層噴流強度影響為線性關係 

3. 分析低層逆溫層對低層噴流強度之影響；在地形之上的逆溫層會增強低層噴流強度 

4. 非線性平衡下類颱風位渦反演，並探討高層與低層暖心結構下壓力擾動分布 

5. 以 ERA5 再分析資料為基礎，反演落磯山脈，青康藏高原，及台灣附近西南氣流之

平衡場；反演結果與觀測場部分相似。 

 

關鍵詞: 位渦、反演原理、無質量層、非線性平衡反演、落磯山脈、青康藏高原、台灣

附近西南氣流 
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Abstract 

Potential vorticity (PV) contains information on the dynamical and thermal properties of 

the atmosphere. With hydrostatic balance approximation and horizontal wind balance relation, 

the balanced wind and the temperature information can be retrieved solely from PV field. This 

retrieval is often called the PV inversion or the invertibility principle of PV. The PV inversion 

often involved solving an elliptic partial differential equation with the nonlocal solution that is 

global in the domain. The PV inversion is a powerful method to recover balanced horizontal 

motions and vertical temperature structure. This thesis studies the topographically bound 

balanced motion with isentropic coordinate. Namely, we study the balanced motion in the 

presence of the topography with temperature intersection. We applied “massless layer approach” 

in our models, which can solve invertibility problems that isentropes intersect with ground or 

topography. 

Our approach mainly followed the work from the two-dimensional linear balanced 

modeling of Silvers and Schubert (2012) and Fulton et al. (2017). We have built both linear 

and nonlinear balanced models in the three-dimensional geometry with the isentropic 

coordinate. With such balanced model and massless layer approach, we studied idealized 

numerical simulations in 2-D and 3-D geometries. The dynamics of LLJs in Silvers and 

Schubert (2012) are reproduced and further gave a quantitative analysis of the effect from both 

thermal and orographic forcing. Additionally, we found that the low-level inversion layer can 

enhance or weaken the strength of the LLJs depending on whether the inversion layer touches 

the topography. For a 3-D invertibility, we found that the flow strength of the LLJs would be 

weaker than a 2-D case. The nonlinear balanced model is for the typhoon-like vortex 

invertibility.  The pressure perturbations in a strong and in a small vortex structure is studied. 

Stronger vortex allows a stronger pressure perturbation. Finally, we performed real case PV 
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inversions in: 1) The Rocky Mountains regions and 2) the Tibetan Plateau region. 3) 

southwesterly flow near Taiwan island. ERA5 Monthly averaged reanalysis data were used in 

1) and 2) while ERA5 hourly reanalysis data were used in 3). The inverted fields in 3-D 

geometry near the Rocky Mountains highly resemble the observed fields both in the strength 

and the spatial distribution of the LLJs. Besides, the superposition of the upper-level and lower-

level dynamics wind fields in the Rocky Mountains case implies that we can trace the influence 

of PV source near the topography, which manifest the importance of the PV invertibility 

principle. The inverted fields near Tibetan Plateau partially captured the features in observation 

like the occurrence of Somali jet and the southerly at the east of plateau. On the other hand, the 

balanced models underestimated the wind speed of southwesterly flow only about 16% near 

Taiwan, which reminds us that in daily time-scale balanced wind fields might be important. 

The low-level south-easterly near Taiwan is smooth and extend southwestwards, which is 

consistent with observations and reveals that PV dynamics is important.  

 

Keywords: Potential vorticity, invertibility principle, massless layer, nonlinear balance 

invertibility, Rocky Mountains, Tibetan Plateau, Southwesterly near Taiwan 
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CHAPTER 1  

Introduction 

1.1. Potential Vorticity Dynamics 

PV balanced dynamics are relatively slow-varying although the atmosphere on Earth 

essentially possesses dynamics with multiply time and space scale. Hence, PV is a useful tool 

to analyze the balanced dynamics of the atmosphere. There are two main principles of PV 

dynamics: 1) PV conservation and 2) PV invertibility principles (Hoskins et al. 1985). PV 

conservation principle predicts the evolution of PV fields under the Lagrangian perspective. 

However, if we wish to realize PV evolution with a given PV field under the Eulerian 

perspective, PV invertibility principle, or PV inversion must be included.  

During the early stage of investigating vorticity, Rossby and Charney (Hoskins et al. 1985) 

proposed that we can treat large-scale atmosphere motions as the evolution of the vertical 

absolute vorticity ζୟ on 2-D planes. The benefits of this idea are obvious. Absolute vorticity, 

including both the rotational effect of Earth and fluid, is materially conserved in non-divergent 

conditions. The flows can be obtained easily by solving Poisson’s equation. However, if we 

take the horizontal divergence into consideration, the material conservation of ζୟ would be 

spoiled. Therefore, the concept of potential vorticity (PV) was created for catching up the 

deficiency of merely discussing vorticity. Since PV contains information about the thickness 

of the fluid, the change of vorticity resulted from stretching can be captured. The widely use of 

PV implies that the creation of vorticity by stretching as well as the horizontal transport of 

vorticity mostly determine the vorticity budget (Hoskins et al. 1985).   

The utilization of PV is an effective way to understand atmospheric dynamics in the quasi-

geostrophic theory framework. Quasi-geostrophic PV (QGPV) dynamics can be applied to 

multiply layer models to study many features of large-scale meteorological phenomenon, for 

example, baroclinic instability. Nevertheless, in addition to QGPV, fully 3-D version of PV is 
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proposed to better exploit the continuous properties of the atmosphere (Ertel 1942). This 

category of PV is referred to as “Ertel potential vorticity”. For simplicity, we use the term “PV” 

to refer to Ertel potential vorticity in the following discussion. The definition of PV is absolute 

vorticity per mass in two potential temperature layers. PV along with isentropic coordinate 

(take potential temperature as vertical coordinate) have many merits. For example, potential 

temperature is a conserved quantity under adiabatic processes. Even in the presence of diabatic 

heating, Lagrangian view of general circulation can be achieved. In such perspective, Hadley 

cells, Ferrel cells, and polar cells can be regarded as one single cell, which is driven by thermal 

forcing in tropical regions (Gallimore and Johnson 1981). As a temperature coordinate, 

isentropic coordinate is suitable for solving frontogenesis problems (Fulton and Schubert1991). 

PV can be conserved (Guinn and Schubert 1994) under dry adiabatic processes. Furthermore, 

if we apply isentropic coordinate, due to the conservation of potential temperature, PV would 

be conserved in 2-D motions (Hoskins 2015). 

 

1.2. Invertibility Dynamics 

We can appreciate the most essence of PV dynamics as written down in Hoskins et al. 

(1985): 

“the significance of potential vorticity does not end with its importance as an air-mass tracer. 

It is also the key to a very powerful and succinct view of the dynamics. IPV maps, in particular, 

are a natural diagnostic tool well suited to making dynamical processes directly visible to the 

human eye and to making meaningful comparisons between atmospheric models and reality.”  

Although Kleinschmidt’s work as “an extremely important piece of pioneering”, in Hoskins et 

al. (1985), the concept of invertibility principle was generalized and regarded as one of 

important parts of balanced dynamics.  

Eliassen (1980) investigated the invertibility problem for topographically bounded, 

balanced, and stratified fluid. They calculated “the critical height” in 2-D orography and 
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qualitatively discussed the 3-D invertibility problem. When the ridge of topography exceeds 

this height, the linear theory (constant density) would break down. Although the restriction of 

isopycnic bottom conditions, this study is a milestone that they made use of the exact potential 

vorticity theorem instead of quasi-geostrophic vorticity. 

Schubert and Alworth (1987) explored the evolution of PV in tropical cyclones. As 

previously mentioned, the evolution of PV contains conservation and invertibility principles. 

In order to make the time evolution of PV be obtained directly, they derived the flux form of 

the potential density equation (the reciprocal of PV), which bears the advantage that if the 

source of angular momentum and diabatic heating is given. Then, by assuming particular 

heating profiles, analytical solutions can be obtained. However, to retrieve wind fields, 

numerical solutions of the nonlinear invertibility problem should be solved. The results were 

similar to observations.  

The combination of isentropic and potential latitude coordinates makes PV local 

conserved (Schubert et al. 1995). In such a scenario, with initial mass distribution (PV 

perturbations) given by mixed layer model theory, invertibility principle problems are solved 

and the meridional slope of trade wind inversion layer is predicted. The slope given by the 

balanced model is much smaller than the slope of the initial mass distribution. Such a result 

can be dynamically explained as PV invertibility principle tends to smooth the gradient of 

mass and wind response.  

Yet, although the application of isentropic coordinate along with other conserved 

horizontal coordinate make prognostic equation free from dealing with advection, some 

limitation still exists. If the lower boundary is not an isentropic surface, in physical space some 

of the isentropes would intersect with ground. In this case, below a specific vertical height 

(cooler than the surface potential temperature) exists regions where do not correspond to any 

real fluid material. In other words, the invertibility would be ill-defined if the lower boundary 

is not an isentropic surface. 
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To handle this situation, Fulton and Schubert (1991) proposed a method called “massless 

layer approach”. In this method, they imagined that when isentropes intersect with the ground, 

it follows the surface instead of disappearing. Therefore, every fluid material can find its 

correspondence in isentropic coordinates. However, in the regions that isentropes follow the 

physical surface, a different governing equation should be applied. The detail of the massless 

layer approach would be discussed in CHAPTER 2. With the massless layer approach, they 

gave solutions to surface frontogenesis processes based on IPV modeling, which is 

comparable to the results of Hoskins (1982).  

The massless layer approach is also used in Silvers and Schubert (2012) and Fulton et al. 

(2017). Silvers and Schubert (2012) attributed the western and eastern parts of the LLJs to the 

isentropic surfaces intersecting with the topography. They solved the invertibility principle 

and demonstrated that if the surface thermal forcing overcomes orographic forcing, cyclonic 

flow centered on the topography would be induced. These flow patterns match well with the 

basic features of observed LLJs like the maximum speed and rapidly decaying in the vertical 

and horizontal direction. Fulton et al. (2017) studied the strong easterly near Antarctica, 

indicated that the strong easterly is induced by the combined effect of high PV anomaly and 

orographic cooling effect. Besides, they added another PV source, including low latitude 

surface temperature gradient in mid-latitude, upper-level pressure gradient in upper-level, and 

stratosphere PV source in upper-level. The inverted wind and mass fields are quite similar to 

observations. Both studies successfully explained the observed field by balanced dynamics, 

which provides us a precious experience to diagnose topographic-related balanced dynamics. 

In this study, we mainly follow the concept of model construction from Silvers and 

Schubert (2012) and Fulton et al. (2017). In Chapter 2, we focused on the PV inversion 

problems, especially in the framework of PV fields in isentropic coordinate. The governing 

equation, the boundary conditions, and the realization of the massless layer in the invertibility 

model would be introduced. In Chapter 3, idealized numerical simulations in 2-D and 3-D 
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geometries were performed and analyzed. Especially, in the 3-D invertibility problem, 

nonlinear balance relation was applied and a typhoon-like case was studied. In CHAPTER 4, 

we solved 2-D and 3-D invertibility problems with PV fields and boundary conditions from 

ERA5 reanalysis data. In CHAPTER 5, we concluded our work. 

 

Table 1. Invertibility problem categories. Blue words highlight the studies solving 

invertibility with massless layer approach and stared words highlight the studies solving 

invertibility with topography. 

 

  

 Linear balance Nonlinear balance 

Cartesian geometry 

Eliassen 1980 

Silvers and Schubert 2012* 

Fulton and Schubert 1991 

 

Cylindrical geometry  
Schubert and Alworth 1987 

Fulton et al. 1995 

Spherical geometry 

(full Coriolis force) 
Fulton et al. 2017* Schubert et al. 1995 
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CHAPTER 2  

Formulation 

 

2.1. Hierarchy of Potential Vorticity 

Start from 2-D nondivergent vorticity equation: 

 
𝑑𝜁ռ

𝑑𝑡
= 0, (1) 

where the simplest conserved quantity 

 𝜁ռ = 𝑓 + 𝜁 . (2) 

We can always express vorticity in terms of 𝜓 by the following definition 

  

⎩
⎨

⎧𝑢 = −
𝜕𝜓

𝜕𝑦

𝑣 = +
𝜕𝜓

𝜕𝑥

 (3) 

and obtain a poisson’s equation 

 𝜁ռ = 𝑓 + 𝛻ϵ𝜓, (4) 

which is an elliptic partial differential equation with uniform coefficients. Fourier transform 

would be an efficient way to solve equation (4). In higher hierarchy, divergent barotropic fluids 

can be described by 

 
𝑑𝜁ռ

𝑑𝑡
+ 𝜁ռ(

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) = 0 (5) 

and for incompressible fluids the continuity equation is 

 
𝜕ℎ

𝜕𝑡
+

𝜕ℎ𝑢

𝜕𝑥
+

𝜕ℎ𝑣

𝜕𝑦
= 0. (6) 

Combining the vorticity equation with the continuity equation, the conservation of PV appears  

 
𝑑P

𝑑𝑡
= 0, (7) 

where P is PV. PV in QG system can be written as 
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 P =
𝑓 + 𝛻ϵ𝜓

ℎ
. (8) 

When the depth of the fluid column ℎ increases, according to the continuity equation, the 

fluids must be stretched due to the horizontal flows converge, and hence, the absolute vorticity 

increases as well.   

The discussion above regards the atmosphere as vertically homogeneous fluids. However, 

Hoskins et al. (1985) pointed out that in isentropic coordinate the depth can even represent the 

mass per two isentropes. This idea was described by 

 𝑃 =
𝜁ռ
ܡܠܠܠܠܠܟ ⋅ 𝛻𝜃

𝜌
 ,  (9) 

which is just Ertel potential vorticity (PV) as mentioned in CHAPTER 1. Furthermore, in large-

scale dynamics, the vertical component of vorticity is first important, and the PV equation can 

be described by 

 𝑃 =
𝑓 + 𝜁ᇆ

−1
𝑔

𝜕𝑝
𝜕𝜃

. (10) 

 

2.2. Invertibility Principle and Massless Layer 

To solve PV invertibility problems, we need to derive an equation which contains the 

balanced wind and the temperature information. Start from the definition of Ertel potential 

vorticity (10) and Exner function: 

 Π = 𝑐֋ গ
𝑝

𝑝Ј

ঘ
ᇈ

, (11) 

where 𝑓   is Coriolis force, 𝜁ᇆ = (𝜕𝑣/𝜕𝑥)ᇆ − (𝜕𝑢/𝜕𝑦 )ᇆ  is vorticity on isentropes, 𝜅 =

𝑅տ/𝑐֋ , and −1/𝑔 (𝜕𝑝/𝜕𝜃)  is static stability parameter. We aim to transform it into the 

equation which is a function of (𝑥, 𝑦, 𝜃)  instead of (𝑥, 𝑦, 𝑝) . Π  serves as the state of the 

atmosphere (𝜕𝑀/𝜕𝜃 = Π corresponding to 𝜕𝛷/𝜕𝑝 = −𝑅տ𝑇/𝑝 ). Our goal is to eliminate 𝑝 

in (10). By the relation Π𝜃 = 𝑐֋𝑇 , we can eliminate 𝑇  as well. To accomplish this, we apply 

the chain rule: 
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𝜕𝑝

𝜕𝜃
=

𝜕Π

𝜕𝜃
/ 

𝑑Π

𝑑𝑝
.  (12) 

Note that Exner function is a function of pressure only: Π = Π(𝑝). 

Then differentiating Π(𝑝) with 𝑝, we obtain: 

 
𝜕𝑝

𝜕𝜃
=

𝑝

𝜅Π

𝜕Π

𝜕𝜃
. (13) 

With the relation: 

 Π𝜃 = 𝑐֋𝑇 =
𝑝

𝜅𝜌
 (14) 

or: 

 𝑝 = 𝜅Π𝜃𝜌, (15) 

we can replace 𝑝 in equation (13) and finally write pressure as a function of 𝜃:   

 
𝜕𝑝

𝜕𝜃
= 𝜌𝜃

𝜕Π

𝜕𝜃
. (16) 

Now we can rewrite (11), and obtain invertibility principle: 

 
𝑔

𝜃𝜌𝑃
(𝑓 + 𝜁ᇆ ) +

𝜕Π

𝜕𝜃
= 0. (17) 

Furthermore, according to (3), we can express ζ஘ in terms of 𝜓 and obtain 

 
𝑔

𝜃𝜌𝑃
(𝑓 + 𝛻ϵ𝜓) +

𝜕Π

𝜕𝜃
= 0. (18) 

Given that an extra equation describes the relation between Π and 𝜓 and proper boundary 

conditions are applied, the solution can be uniquely determined. The discussion above is 

enough to determine solutions if we only wish to solve invertibility problems that topographic 

surface follows an isentropic surface (like Figure 1).  

However, if we want to solve invertibility problems in the real world, we probably need 

to treat the tricky mathematical issue: the isentropes intersect with ground, as shown in Figure 

2(a). The massless layer approach was proposed as a method to solve the invertibility principle 

in isentropic coordinates without complex a lower boundary condition (Fulton and Schubert 

1991). This method physically images that when the isentropic surfaces touch the ground, they 
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follow the topography. Hence, in such a picture, every point in (𝑥, 𝑦, 𝜃) coordinate space is 

defined (Figure 2a). However, as Figure 2 (b) shown, several isentropes in massless layer 

overlap in physical space. There is no mass between such two isentropes, which indicates that 

the first term in (17) should vanish like  

 
(𝑓 + 𝜁ᇆ )

𝑃
= −

1

𝑔

𝜕𝑝

𝜕𝜃
= 0. (19) 

As a result, equation (18) becomes 

 
𝜕Π

𝜕𝜃
= 0. (20) 

To separate the massless layer region from atmosphere region, we need to specify surface 

potential temperature 𝜃մ(𝑥, 𝑦), as shown in Figure 3. The regions below 𝜃 = 𝜃մ(𝑥, 𝑦) are 

massless layer and should apply (20) as one of the governing equations. 

 

2.3. Balance Relation 

To solve the invertibility principle, we need to make connection between vertical structure 

(Π) and horizontal flow (ψ). We assume that balance motions follow hydrostatic equilibrium, 

which in 𝜃-coordinate can be written as:  

 𝛱 =
𝜕M

𝜕𝜃
, (21) 

where M is Montgomery stream function: 

 M = 𝑐ձ 𝑇 + 𝛷. (22) 

Substitute (21) into (18) and (20) , we obtain governing equations  

 

⎩
⎪
⎨

⎪
⎧ 𝑔

𝜃𝜌𝑃
൫𝑓 + 𝛻2𝜓൯ +

𝜕2M

𝜕𝜃2 = 0

𝜕2M

𝜕𝜃2 = 0

 
𝑖𝑛 𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒      

  𝑖𝑛 𝑚𝑎𝑠𝑠𝑠𝑙𝑒𝑠𝑠 𝑙𝑎𝑦𝑒𝑟.
 (23) 

To introduce the different hierarchy of balance relations, we start from horizontal momentum 

equation in isentropic coordinate 
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 𝜕𝑉 ⃗

𝜕𝑡
+ 𝑉⃗ ⋅ 𝛻𝑉 ⃗ + 𝑓ॕ𝑘̂ × 𝑉 ⃗ ॖ = −𝛻M. (24) 

Take the divergent of (24), we obtain 

 

𝜕𝛻 ⋅ 𝑉 ⃗

𝜕𝑡
+ 𝑉⃗ ⋅ 𝛻ॕ𝛻 ⋅ 𝑉 ⃗ ॖ + গ

𝜕ϵ𝑢

𝜕𝑥ϵ
+

𝜕ϵ𝑣

𝜕𝑦ϵ
+

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑦
 ঘ

+ 𝛻 ⋅ (𝑓𝛻𝜓) = −𝛻ϵM. 

(25) 

This complex equation (25) can be simplified if we make non-divergent assumption [like (3)]  

 2 ঝ
𝜕ϵ𝜓

𝜕𝑥ϵ

𝜕ϵ𝜓

𝜕𝑦ϵ
− গ

𝜕ϵ𝜓

𝜕𝑥𝜕𝑦
ঘঞ + 𝛻 ⋅ (𝑓𝛻𝜓) = 𝛻ϵM, (26) 

which is called Bolin-Charney balance relation (or nonlinear balance relation for the following 

discussion). If we neglect nonlinear term on f-plane, we can obtain linear balance relation 

 𝑓𝛻ϵ𝜓 = 𝛻ϵM. (27) 

With linear balance relation, we can substitute ∇ଶ𝜓 in (27) into (28) and obtain the governing 

equations 

 

⎩
⎪
⎨

⎪
⎧ 𝑔

𝜃𝜌𝑃
൬𝑓 +

1

𝑓
𝛻2𝑀൰ +

𝜕2M

𝜕𝜃2 = 0

𝜕2𝑀

𝜕𝜃2 = 0

 
, 𝑤ℎ𝑒𝑛 𝜃 ≥ 𝜃ௌ       

, 𝑤ℎ𝑒𝑛 𝜃 < 𝜃ௌ .      
 (28) 

There is only one unknown variable and therefore we can solve for it theoretically. 

 

2.4. Boundary conditions and reference state 

Equation (28) is solvable. However, to make the solution uniquely determined, we need 

to apply boundary conditions. Here we follow the setup of upper and lower boundary 

conditions in Silvers and Schubert (2012).  

Although different governing equations are applied in different regions, (28) are 

essentially elliptic partial differential equations boundary conditions applied. For lateral 

boundary conditions (29), simple Neumann boundary conditions are applied  
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⎩
⎨

⎧
𝜕M

𝜕𝑥
= 0

𝜕M

𝜕𝑦
= 0

 
, 𝑎𝑡 𝑥 = ±𝐿௫       

, 𝑎𝑡 𝑦 = ±𝐿௬ .      
 (29) 

where L୶ and L୷ are the horizontal range of the domain. Such boundary conditions imply that 

the flow at the boundaries is parallel to the direction of the boundary. In a 2-D geometry, it 

becomes zero wind at the boundaries. For upper boundary condition (30), we specify upper 

pressure and therefore obtain  

 
𝜕M

𝜕𝜃
= Π(𝑝յ ) , 𝑎𝑡 𝜃 = 𝜃் ,         (30) 

where Π(𝑝்) is defined in (11). Since we wish to investigate the orographic forcing, surface 

thermal forcing, and massless layer dynamics, the choice of lower boundary condition is crucial. 

To satisfy the surface geopotential, we make subtraction between M and 
ப୑

డఏ
 at 𝜃 = 𝜃஻, and 

we have (31) 

 M − 𝜃
𝜕M

𝜕𝜃
= 𝛷մ  , 𝑎𝑡 𝜃 = 𝜃஻ ,         (31) 

where Φௌ is the geopotential height and should be specified. In summary, the invertibility 

problem contains (28)-(31). To solve for M, we should specify L୶, 𝐿௬, 𝜃் , 𝜃஻, 𝜃ௌ, Φௌ, and P. 

Since in balanced flow M monotonically increases with 𝜃, to further make the solution 

easy to understand, we assume a reference state. This reference state decomposes Montgomery 

streamfunction into the background part and deviation from background part 

 𝑀 = 𝑀࣪(𝜃) + 𝑀 ஥(𝑥, 𝑦, 𝜃), (32) 

where the background part is a function of 𝜃 only. Furthermore, we specify  

 𝑀࣪(𝜃) = 𝛱(𝑝գ) 𝜃 − [𝛱(𝑝յ ) − 𝛱(𝑝գ)]
(𝜃 − 𝜃գ)ϵ

(𝜃յ − 𝜃գ)ϵ
. (33) 

This reference state promises that Π෩(𝜃஻) = Π(𝑝஻)  and Π෩(𝜃்) = Π(𝑝்) , where 𝑝் =

150 hPa and p୆ = 1000 hPa in the following experiments unless otherwise noted. With (33), 

the reference state of Exner function is linearly increases along 𝜃-coordinates. With such a 
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reference state assumption, we can construct a reference state of PV, which can be the PV field 

in a stationary atmosphere 

 𝑃̃(𝜃) =
𝑓

− 1
𝑔

𝑑𝑝̃
𝑑𝜃

 
. (34) 

The PV fields in CHAPTER3 are specified as (34) unless otherwise noted. 

The reference state implies that the local relation between pressure and potential 

temperature. However, it can be proved that the reference state cannot affect the results of 

model. Once PV field and boundary conditions given, the reference state can make solutions 

converge faster.  
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CHAPTER 3  

Idealized Numerical Experiments 

To understand the basic PV invertibility dynamics, we simulated several idealized 

invertibility problems: 1) the formation and the strength of LLJs by the combination of 

topography effect and massless layer, 2) PV disturbance test, and 3) the effect of inversion layer 

coupled with topography. Moreover, we aimed to make dynamical explanations of the LLJs 

near The Rocky Mountains as discussion for real case. In this chapter, we set the domain 

parameters as L୶ = 7000 km,  𝐿௬ = 7000 km, 𝜃் = 360 K, and 𝜃஻ = 290 K.  

 

3.1. Two-dimensional idealized invertibility Problems 

For simplicity we first consider meridionally symmetric invertibility problem. To solve 

this problem in two-dimensional space (𝑥, 𝜃), the invertibility principle becomes 

 

 

⎩
⎪
⎨

⎪
⎧ 𝑔

𝜃𝜌𝑃
ቆ𝑓 +

1

𝑓

𝜕2𝑀

𝜕𝑥2
ቇ +

𝜕2𝑀

𝜕𝜃2 = 0

𝜕2𝑀

𝜕𝜃2 = 0

 
, 𝑤ℎ𝑒𝑛 𝜃 ≥ 𝜃ௌ       

, 𝑤ℎ𝑒𝑛 𝜃 < 𝜃ௌ       
 (35) 

and 

 
𝜕𝑀

𝜕𝑥
= 0 , 𝑎𝑡 𝐿 = ±𝐿௫          (36) 

and 

 
𝜕𝑀

𝜕𝜃
= 𝛱(𝑝յ ) , 𝑎𝑡 𝜃 = 𝜃்          (37) 

and 

 𝑀 − 𝜃
𝜕𝑀

𝜕𝜃
= 𝛷մ  , 𝑎𝑡 𝜃 = 𝜃஻ .         (38) 

We first demonstrated pure orographic forcing case (like Eliassen 1980 and Silvers and 

Schubert 2012). There are no surface thermal forcing and no massless layer. The geopotential 
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on the lower boundary is specified as a Gaussian mountain  

 𝛷մ(𝑥) = 𝑔𝐻𝑒−(֓/֓ɱ)ɞ , (39) 

where the maximum height is H = 1200 m  and the width is 𝑥଴ = 1000 km . The surface 

thermal forcing θୗ = 0 K. The result is shown in Figure 5. In this case, the topographic surface 

is just an isentropic surface. From Figure 5 we can realize the presence of the mountain is 

equivalent to specifying bottom pressure as the surface of mountain. The nonlocal effect of PV 

invertibility extend the pressure anomaly to the ambient regions. Therefore, in isobaric 

coordinate, the isentropic surface is bend upward to match the shape of mountain, which is 

equivalent to a cold region. Besides, according to thermal wind, we can expect anticyclonic 

flows near the topography.  

In the pure isentropes intersect with ground case, we used a Gaussian forcing as well: 

 𝜃մ = 𝜃Ј 𝑒
−(֓/֓ɱ)ɞ , (40) 

where the surface thermal forcing θୗ = 11 K. and width 𝑥଴ = 1000 km. The numerical result 

is shown in Figure 6, which shows that the presence of surface thermal forcing makes the 

vertical pressure gradient vanish in massless layer and is equivalent to specifying the surface 

pressure just on the massless layer surface θୗ. The nonlocal effects of PV invertibility extend 

the pressure anomaly to the ambient regions. Therefore, in isobaric coordinate, the isentropic 

surface is bend downward and intersect with ground. That is equivalent to a warm region. 

According to thermal wind theory, we can expect cyclonic flows near the heating. 

Although we can theoretically predict the flow direction, the real conditions on Earth are with 

the combination of orographic forcing (cooling) and surface thermal forcing (heating). To 

answer how the two forcings interact and what the net effect of them would be, the following 

paragraphs discuss another two idealized cases, in which we found thermal effect can cancel 

or even overcome orographic effect, as shown in Figure 7. 

The induced LLJs are anti-symmetric and cyclonic with isentropes bend down, intersecting 

to the ground. The patterns are similar to observed heated mountain cyclonic flow like The 
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Rocky Mountains, as shown in section 4.1 (Figure 22), in which the isentropes bend downward 

and the strength of jets near the mountain are about 10 m/s. Although the boundary layer 

dynamics are not included in our invertibility problem, we can identify the strong wind field 

below and near 900 hPa. The resemblance between model and observed wind field shows that 

LLJs can be induced with a heated topography. The complete invertibility problem would be 

solved in CHAPTER4. The massless layer could be treated as a PV source in the domain. This 

idea may stem from Electromagnetism. As we known, charge generates electric fields. Such 

field act at a distance. With a given distribution of charge, we can solve for electric potential, 

which is one of the most classical invertibility problem. In finite domain invertibility problem, 

the charges outside the domain affect the electric field in the domain as well. Similarly, the 

massless layer and boundary conditions should be regarded as PV source and determine the 

mass and wind response in domain as well.  

We also investigated the maximum cyclonic wind strength as a function of topographic 

forcing and surface thermal forcing, as shown in Figure 9. The results reveal that the PV 

invertibility principle we solved are quite linear. Besides, the strength of the LLJs is 

independent of the width of the mountain. We can explain this result physically by the argument 

that as the width of Gaussian mountain increases, the slope of the mountain decreases 

accordingly. 

Additionally, to manifest how the change of PV influences inverted wind and mass fields, 

we gave idealized inversion layers as the form of PV anomalies based on the case that 

resembles the LLJs near the Rocky Mountains (θ଴ = 11 K  and Φୗ = 1200 m) to examine 

how the different isentropic height of inversion layer affects the strength of cyclonic flow. The 

PV fields are shown in Figure 10 and the wind differences are shown in Figure 11. When the 

inversion layer penetrates the topography, the structure of the cyclonic flow is weaken, as 

shown in Figure 10 (a) and Figure 11 (a). The weakening of cyclonic flow could be explained 

by the PV anomaly being lacked in massless layer. This deficiency of positive PV is equivalent 
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to an anticyclonic flow and therefore cancel out the LLJs induced by bottom forcing. On the 

other hand, the inversion layer would interact with forcing and enhance cyclonic flow if it just 

touches with the topography. As the inversion layer lifting away from the topography gradually, 

the enhancement effect would decay. These processes are quantified, as shown in Figure 12. 

Note that 305 K is the maximum enhancement inversion layer height, which is slightly higher 

than 𝜃଴ = 12 K in (40). 

 

3.2. Three dimensional invertibility Problems 

The invertibility equation could be extended in a three-dimensional form as well  

 
𝑔

𝜃𝜌P
গ𝑓 +

𝜕ϵ𝜓

𝜕𝑥ϵ
+

𝜕ϵ𝜓

𝜕𝑦ϵ
ঘ + 𝑓

𝜕ϵ𝜓

𝜕𝜃ϵ
=

𝜎

𝜃𝜌 ̃

ࣾ
. (41) 

We apply azimuthal symmetric orographic and surface thermal forcings, and the result is shown 

in Figure 13. The pattern of wind and thermal fields are similar to the results from a two-

dimensional model, while the magnitude is smaller than the 2-D one. We can make an analogy 

of meridional symmetric PV source (2D) and azimuthal symmetric source (3D) as linear and 

point charge, which indicates that the streamfunction and corresponding gradient are smaller. 

This can be explained by equal partition principle. With extra dimension and corresponding 

term, the gradient in (41) would be smaller than the gradient in a 2-D case. 

If the aspect ratio is increased from one (Figure 13) to infinite (Figure 14), the cyclonic 

LLJs would approach the 2-D limit (Figure 8). It is reasonable that (41) would resemble 2-D 

equation given that the variation of forcings along y-direction vanishes.  

 

3.3. Nonlinear Balanced Invertibility Models 

According to (26) and (23), we can solve the invertibility problem with a nonlinear balance 

model. Equation (37) and (38) are applied for the upper and lower boundary conditions. The 

reference state value assumptions are used for lateral boundary for nonlinearity-dominated case 
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 M = Mࣴ , 𝑎𝑡 𝐿 = ±𝐿଴ .         (42) 

We first performed PV inversion that weak PV anomaly in high horizontal scale for linear 

and nonlinear cases. The PV anomaly is set as 

 P = PЈ 𝑒
−ঝ५֍

ճ
६

ɞ
+ঁ ᇆ

ᇆɱ
ং

ɞ
ঞ
, (43) 

where P଴ = 2 PVU, R = 400 km, and θ଴ = 330 𝐾. The numerical result is shown in Figure 

16. Simple scale analysis result shows that non-geostrophic component is one order less than 

geostrophic component. Therefore, the strength of vortex in nonlinear balance is slightly 

smaller in linear balance relation.  

 A typhoon-like case is simulated, whose P଴ = 20 PVU, R = 50 km, θ଴ = 290 𝐾. In this 

case, strong PV anomaly appears near surface in hurricane eye size. The results for linear and 

nonlinear invertibility are shown in Figure 17. The maximum wind speed appears at the radius 

about 70 km with a magnitude up to 32.1 m/s. We compared the difference between linear and 

nonlinear balance in this case, as shown in Figure 18. It is reasonable that the mass response in 

nonlinear balance relation is significantly larger than in linear balance since that in nonlinear 

balanced models the Rossby radius of deformation (c/ζ) can be quite small in high vorticity 

region according to the geostrophic adjustment theory. Similarly, the relatively small wind 

speed can be explained by that the pressure gradient force would be shared by both Coriolis 

force and centrifugal force in nonlinear balance relation. In summary, considering nonlinear 

balance instead of linear balance in an identical typhoon-like PV structure cases, the maximum 

wind speed decreases yet the warm core structure is prominent.  

We added an upper-level negative PV anomaly with P଴ = 1 PVU , R = 100 km , and 

θ଴ = 360 𝐾 , as an effectively upper troposphere warming. Such a PV profile is shown in 

Figure 19 (a). The difference between typhoon-like case and this case is shown in Figure 19 

(b). Consequently, an upper-level anti-cyclonic flow is induced. The wind speed of such flow 

is up to 2 m/s and at the radius about 100 km. The pressure difference is positive since the air 
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with higher potential temperature extends to high pressure region. Note that the pressure 

difference spreads horizontally and vertically, while in high inertia stability region (about 340 

K) the pressure difference spreads mainly vertically. Similarly, this is result from the small 

Rossby radius of deformation in the strong vorticity region.  

To further demonstrate the influence of high inertia stability, we added a lower-level 

positive PV anomaly with P଴ = 1 PVU , R = 100 km , and θ଴ = 290 𝐾 , as an effectively 

lower troposphere warming. Such a PV profile is shown in Figure 20 (a). The difference 

between typhoon-like case and this case is shown in Figure 20 (b). Consequently, a lower-level 

cyclonic flow is induced. The wind speed of such flow is up to 3 m/s and at the radius about 

150 km. The pressure difference is positive since the air with higher potential temperature 

extends to high pressure region. Note that the pressure difference spreads more vertically than 

the case in Figure 19. 
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CHAPTER 4  

Real Case Numerical Experiments 

4.1. The Rocky Mountains Observations and Diagnosis  

After understanding the invertibility and PV relations with several idealized cases 

discussed in CHPATER 3, we demonstrate real cases invertibility in The Rocky Mountains 

with reanalysis data.  

There are many observations about the warm seasons LLJs near the Rocky Mountains 

(Vera et al. 2006). One example of such feature is shown in Figure 21, where the lower-level 

cyclonic wind near The Rocky Mountains could be seen clearly. As shown in CHAPTER 3, the 

occurrence of the LLJs as well as the combination effect of topography and surface thermal 

forcing can be simulated by our balanced model. Figure 21 (b) also show that along the ridge 

the low-level wind and thermal fields are roughly meridionally symmetry, which may be a 

good example to demonstrate that invertibility principle with massless layer approach is 

suitable for the diagnosis of balanced dynamics both in ideal case and in real world 

environment.  

To simplify our problem, we chose the area from 180oW to 40oW with the meridional 

mean from 30oN to 35oN in latitude. The obtained cross-section of wind and PV fields in 

pressure coordinate are shown in Figure 22 (a) and Figure 23 (a). The northerly (at east of the 

mountain, 6 m/s in maximum wind) is smaller in range and magnitude than southerly (at the 

west of the mountain, 10 m/s in maximum wind). Due to cool SST, there is local temperature 

minima at the east of mountain. Besides, the potential temperature is higher near the mountain, 

which is dynamically consistent with previous numerical results in CHAPTER3 (Figure 8). 

From the observed PV field, we notice that there is high PV region below 900hPa at the west 

of the mountain, which might intuitively explain the stronger wind speed there. 

With topographical elevation data and surface temperature profile, the position of 
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isentropes intersected with ground [θୱ(x)] can be determined by interpolation. Interpolated PV 

field, boundary conditions, and massless layer profile provide proper conditions to solve 

invertibility problem. We employed 2-D balanced model to retrieve wind and pressure fields 

and wished to obtain numerical results like observed fields. However, we try ideal upper 

boundary condition and massless layer profile to see if simple conditions can give similar 

patterns. The applied ideal massless layer profile as well as the numerical results are all shown 

in Figure 24. This profile is given by some simple combination of Gaussian function and linear 

function and PV field for invertibility is shown in Figure 23 (b). and the lower boundary 

conditions apply real topography the same as the black shading in Figure 22 (a). The lateral 

boundary conditions are set as (36). 

There are several similarities between observations and numerical results. Near the center 

of topography, the cyclonic flow is captured although the extension of upper southerly. The 

upper-level patterns are also bear resemblance to the wind fields observed despite that the 

magnitude are significantly larger. Such result may due to the assumption of meridionally 

symmetry (Figure 21). The upper-level PV fields which originally tend to induce 3-D flow are 

employed to solve for 2-D invertibility problem. According to the previous 3-D idealized 

results (Figure 15), the strength of flow would be stronger  

Next, we come back to more realistic case. We drew the massless layer profile through 

interpolated pressure profile, and used 300K as standard height to compute the surface pressure 

and then found out the corresponding massless layer temperature θୗ. The numerical results are 

shown in Figure 25, and the θୗ profile is also shown in the thick black line in Figure 25 (b). 

Although the lower-level features still exist, the southerly is too strong both in upper and lower 

atmosphere, especially in the east of the mountain.  

Now we wish to match model results to observed fields better. we decrease the θୱ slope 

at the east of the mountain by giving a linear temperature gradient. The numerical results are 

shown in Figure 26, and the θୗ profile is also shown in the thick black line in Figure 26 (b). 
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The lower-level wind speed is reasonable than that in Figure 25. Although there is no simple 

and intuitive explanation for this adjustment, this result reminds us the importance of the lower 

boundary condition in determining inverted fields in whole domain. And for simplicity, we 

would demonstrate the influence of upper and lower dynamics based on these results. 

To make inverted balanced fields match better with observed fields, we turned to 3-D 

invertibility (41) to include non-symmetric balanced dynamics near The Rocky Mountains. The 

horizontal domain is chosen as Figure 21. We apply the same method to obtain top and bottom 

boundary conditions but in two-dimensional form. The result is shown in Figure 27 (a). We 

notice that the magnitude of upper-level jets stream is weaker than those in two-dimensional 

model, which is close to observed value. However, the northerly at the west of the Rocky 

Mountains are still overwhelmed and extend to upper-level. This inconsistency may due to 

bottom boundary layer. In well mixed layer, stratification is small compared to free atmosphere. 

Therefore, PV field is small near ground.  

We extra increase the height of massless layer for Figure 27 (b) 25hPa (c) 50 hPa. The 

lifted massless layer is shown in Figure 28. Obviously, the results of lifting massless layer for 

50 hPa matches observations fields very well. The strength and spatial distribution of upper-

level jets is well inverted. The overall low-level horizontal flow (Figure 29) is quite similar to 

observations (Figure 21 (b)). Despite that our model neglect the effect of boundary layer 

dynamics, the features of the LLJs near topography are well captured both in magnitude and 

thickness of jets. It is clear in Figure 28 (a) that lifting massless layer mainly affects the west 

of the mountain, where possesses high PV fluctuations as well as the lowest surface 

temperature. Both characteristics make interpolation less accurate. Similarly, in near ground 

area the reanalysis data are less convincing. Therefore, we can realize why lifting massless 

layer can produce patterns like observed fields. 

Turn back to 2-D invertibility problem. To demonstrate the nonlocal effect of PV 

invertibility, we separated any PV source into upper and lower dynamics by 330 K height. The 
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result is shown in Figure 30. The upper dynamics case (Figure 30 (a) ) mainly result from upper 

PV disturbance, while the lower dynamics (Figure 30 (b) ) can mainly be attributed to 

orographic forcing and surface thermal forcing. Their wind fields summation is shown in 

Figure 30 (c). The prevalence of southerly in upper PV dynamics is canceled out by the strong 

northerly in lower dynamics case. The summation wind field is very closed to whole domain 

inversion in Figure 26. This result reveals that our invertibility equations are basically linear. 

This characteristic is an advantage when we wish to analyze the effect of local PV contribution.  

 

4.2. The Taiwan and Tibetan Observations and Diagnosis 

Previous research on balanced flow with topography about the strong easterly near the 

edge of Antarctica (Fulton et al. 2017), the cyclonic flow near Andes Mountains. In CHAPTER 

4.1, we fully explore the real case 2-D and 3-D invertibility problem near The Rocky Mountains. 

Beside from The Rocky Mountains diagnosis, we wish to employ our model to solve for 

balanced fields with isentropes intersected with ground.  

Tibetan plateau affects nearby climatology significantly. It penetrates to about 600 hPa, 

which can heat the atmosphere directly through sensible heat. The ERA5 reanalysis data in July, 

2020 is shown in Figure 31. One of the most prominent LLJs in north hemisphere warm season 

is the Somali jet, a southwesterly jet stream that provides sufficient moisture for south Asia in 

Monsoon season. Although the maximum wind speed of the Somali jet is at about 850 hPa, we 

can identify the jet stream in 700 hPa observed fields.  

The 3-D numerical simulation was performed and the horizontal fields at 700 hPa are 

shown in Figure 32. The overall patterns are captured by our model, including the Somali jet, 

the warmer region in West Asia, and the weak southerly in the east of the Tibetan plateau. The 

horizontal profile of observation and the numerical result are shown in Figure 33 and Figure 

34. In observation, the maximum wind speed of the Somali jet is up to 15 m/s, while the wind 

speed is about 10 m/s (Figure 33), Beside, the return flow and slightly heated surface at the 
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southern part of the plateau in Figure 33 (b) doesn’t appear in observed field; Furthermore, the 

model overestimated southerly at the east of the Tibetan plateau in Figure 34. Both 

inconsistencies are accompanied with opposing heating or cooling thermal fields near the 

topography. Such inconsistency occurs may remind us of the importance of properly choosing 

of massless layer profile. 

Additionally, we focused on how strong south-westerly interacts with Taiwan island. A 24 

hour averaged reanalysis data on 20 July 2015 shows that a northeast-southwest-oriented PV 

band near the southwestern coast of China, inducing south-westerly flow at its right-hand side, 

as shown in Figure 35 (a). This PV band structure vertically extended to roughly 300 hPa, as 

shown in Figure 36. 

The zonal profiles across Taiwan island in observations and numerical results are shown 

in Figure 37. Balanced model can capture the vertical extension of strong southerly induced by 

the PV band. The wind speed of south-westerly is about 19.2 m/s between 800hPa and 600 hPa 

in observations and balanced models can produce wind speed up to 16.5 m/s. The difference 

between them is about 16%, which might result from the existence of transient fields, which 

would disappear after the geostrophic adjustment process. Besides, in observations, the stream 

right above topography is weak, such feature can be captured by balanced model. However, 

small scale temperature gradient on the Taiwan island is not captured by model, which indicates 

that in horizontal scale around 100 km is too small for geostrophic adjustment process. In 

summary, the wind and thermal fields patterns in the model are overall consistent with 

observation. 
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CHAPTER 5  

Conclusions 

We emphasized the importance of PV dynamics again in this article, especially in the 

invertibility principle. We focused on previous studies about the practical and theoretical 

developments of the PV invertibility principle. With the progress of computational ability, some 

nonhydrostatic, full-physics models like WRF and CReSS are widely used in investigating 

complex and nonlinear interactions between moist process and dynamics. However, the 

research on balanced dynamics is still worthwhile since that the moist and complicated thermal 

dynamics could produce balanced dynamics and the resultant balanced dynamics could 

feedback to thermal dynamics. More clear physics could be shown in balanced models in topics 

such as dynamical efficiency, PV mixing, and center pressure fall in the eyewall in the typhoon 

rapid intensification processes (Tsujino and Kuo 2020). In the whole rapid intensification 

procedure, balanced dynamics play an important role in .  

We mainly followed the concept of model construction from Silvers and Schubert (2012) 

and Fulton et al. (2017). We have built balanced model, and studied the idealized numerical 

simulations in 2-D and 3-D geometries. The dynamics of LLJs in Silvers and Schubert (2012) 

are reproduced and further gave a quantitative analysis of the effect from both thermal and 

orographic forcing. The wind field forcing could be represented as the linear combination of 

both surface thermal forcing and topography effect, which fits the geostrophic-balanced 

invertibility principle. With a Gaussian-shaped mountain, we further show the LLJs structure 

would be spoiled if there is an idealized inversion layer below the height of the ridge. On the 

other hand, if the inversion layer is set above the height of the ridge, the cyclonic flow would 

be enhanced. For a 3-D invertibility, we found that the flow strength of the LLJs would be 

weaker than a 2-D case. We also perform PV inversion near The Rocky Mountains in warm 

season. The results bear much resemblance to features in observations, especially in 3-D 
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numerical results with a 50 hPa massless layer lifting adjustment. The superposition of upper 

and lower dynamics wind fields implies that we can trace the influence of PV source, which 

manifests the importance of PV invertibility principle. Aside from the analysis of the Rocky 

Mountains, we diagnosed the ambient flow of Tibetan plateau as well as the interaction between 

the southwesterly flow and the Taiwan island. In the PV inversion of the Tibetan plateau, the 

flow and thermal patterns that are partially captured by the model. The wind deviated from 

observed fields might be corrected by drawing better lower boundary condition. In the PV 

inversion of the Taiwan island, the wind induced by PV band in the balanced model is the same 

order with observed fields, which reminds us that the balanced dynamics can account for most 

of the observed fields in daily time-scale. The smoothness of low-level wind is also consistent 

with the PV invertibility dynamics.  

In summary, our works include: 1) reviewing PV dynamics, especially the PV invertibility 

dynamics 2) building 3-D linear and nonlinear balanced models with massless layer approach, 

3) simulating and analyzing several idealized PV inversion experiments, 4) simulating and 

analyzing real case PV inversions based on ERA5 reanalysis data, and 5) developing an 

interpolation method to solve elliptic partial differential equations easily and effectively. 
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Appendix 

A. Model Discretization  

With the reference state, we can rewrite (35) into 

 𝛼 ቆ𝑓 +
𝜕ଶ𝜓

𝜕𝑥ଶ
ቇ + 𝑓

𝜕ଶ𝜓

𝜕𝜃ଶ
=

𝜎෤

𝜃𝜌𝑃
 (A.1) 

We define ि𝑥ք, 𝜃օी = (𝑥1 + 𝑖𝛥𝑥, 𝜃𝑗 + 𝑗𝛥𝜃)  with 𝑖 = 1, 2,… .𝑚  and 𝑗 = 1, 2,…𝑛  in the 

domain. They represent the horizontal and vertical grid points, respectively. Therefore, we have 

discretized function 𝑓քӴօ that corresponds to 𝑓(xЏ, θА).    

Hence, (A.1) can discretize into  

 αЏӴА গ
𝜓ք+φӴօ + 𝜓ք−φӴօ − 2𝜓քӴօ

Δ𝑥ϵ
ঘ + 𝑓 গ

𝜓քӴօ+φ + 𝜓քӴօ−φ − 2𝜓քӴօ

Δ𝜃ϵ
ঘ = 𝐹քӴօ (A.2) 

, where  

 𝐹քӴօ =
𝜎̃քӴօ

𝜃օ 𝜌ք̃Ӵօ

− αЏӴА 𝑓 (A.3) 

and 

 ৓𝛼քӴօ =

𝑔
𝜃օ 𝜌քӴօPЏӴА

0
 

, 𝑤ℎ𝑒𝑛 𝜃 ≥ 𝜃ௌ       

, 𝑤ℎ𝑒𝑛 𝜃 < 𝜃ௌ       
 (A.4) 

Note that 𝜌քӴօ is a function of 𝜓
୧,୨

.  

For vertical pressure 

 ΠքӴօ = Π࣪А + 𝑓(
𝜓քӴօ+φ − 𝜓քӴօ−φ

2Δ𝜃
) 

, 𝑤ℎ𝑒𝑛 𝜃 ≥ 𝜃ௌ       

, 𝑤ℎ𝑒𝑛 𝜃 < 𝜃ௌ       
 (A.5) 

, where Π࣪А = Π࣪(𝜃օ) is the reference state. 

The upper boundary is determined by 

  𝜓քӴ։+φ = 𝜓քӴ։−φ + 2Δ𝜃ज़ΠЏӴμ − Π࣪(𝜃։)ड़ (A.6) 

and the lower boundary conditions is described by 
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  𝜓քӴЈ = 𝜓քӴϵ +
2𝛥𝜃

𝜃գ

ঝ𝜓քӴφ −
𝛷մ(𝑥ք)

𝑓
ঞ (A.7) 

Although in most of the situations the density deviation from the reference state is small, it is 

still a function of ψ and can be written down as 

  𝜌քӴօ =
𝑝Ј

𝑅տ𝜅
ভ

𝛱քӴօ

𝑐֋

ম

վՕ−φ
ճՉ

 (A.8) 

, where ΠЏӴμ is unknown. Therefore, iterative technique is necessary to solve for both ψ୧,୨ 

and corresponding α௜,௝. To make the model converge, we need to do iterations in different 

loops. In the inner loop, the model did several times iteration for (A.2) and (A.3), applied all 

boundary conditions, (A.5) , and (A.7) the density as a function of Π. Then, the residual of 

equation (A.2) was calculated. In the model we used, 20 times iteration is used in the inner 

loop. In the outer loop, the model repeated the inner loop except that the residual of (A.2) was 

below the criteria. The way we chose the criteria would be mentioned in next section. 

Additionally, to speed up the convergence rate, we applied interpolation method, which would 

be introduced in next section as well. 

Besides, from Figure A. we know that the criteria are small enough for both the wind fields 

difference in 2-D models (Δu < 0.1 m/s) and in 3-D models (Δu < 1 m/s).  
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Figure A.1. The wind difference for Fig 8 as residual decrease. (e.g. abscissa RES = 10ିଶ  

means that the u୫ୟ୶  which residual is equal to 10ିଶ  minus the u୫ୟ୶  which residual is 

equal to 10ିଵ). 

 

Table 2. The model resolutions and the residual as criteria for the convergence of models 

 

 

  

 2-D 3-D 

 
2-D idealized 

exp. 

Rocky 

Mountains 

Rocky 

Mountains 

Tibetan 

Plateau 
Taiwan Nonlinear 

Resolutions 

(grid number) 
(511, 2047) (255,63,127) (181,91,127) (91,91,127) (31,31,20) 

Residual to 

converge 
1 × 10−Κ 1 × 10−ϵ 
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B. Model Convergence rate Experiments 

We start from solving Poisson’s equation, which served as an invertibility problem in the 

simplest version 

 𝛻ϵ𝜓 = 𝜁 (B.1) 

and the boundary conditions apply 

 𝜓 = 0 
, 𝑎𝑡 𝑥 = ±𝐿௫      

, 𝑎𝑡 𝑦 = ±𝐿௬      
 (B.2) 

Discretize and rearrange (B.1), we obtain 

 𝜓քӴօ =
1

4
গ𝜓ք+φӴօ + 𝜓ք−φӴօ + 𝜓քӴօ+φ + 𝜓քӴօ−φ −

𝜁քӴօ

ℎϵ
ঘ (B.3) 

Jacobi’s iterative method is suitable for solving such linear algebra manipulation due to 

vectorization techniques in MATLAB or python. With this method, we have n + 1 step based 

on n step: 

 𝜙௡ାଵ
௜,௝

=
1

4
൬𝜙௡

௜ାଵ,௝
+ 𝜙௡

௜ିଵ,௝
+ 𝜙௡

௜,௝ାଵ
+ 𝜙௡

௜,௝ିଵ
−

𝜁௜,௝

ℎଶ
൰ (B.4) 

Taking the difference between (B.3) and (B.4), we obtain 

 𝑒௜,௝ =
1

4
൫𝑒௜ାଵ,௝ + 𝑒௜ିଵ,௝ + 𝑒௜,௝ାଵ + 𝑒௜,௝ିଵ൯ (B.5) 

, which indicates that in relaxation method every iteration is just performing error smoothing 

procedure. If the error distribution is smooth, then according to (B.2), the error can only be 

eliminated by the boundary conditions. Course grid points in the model let error decrease faster 

than fine grid points since we need fewer iteration step to dissipate the error in the center of the 

domain. On the other hand, high wave number error can also be dissipated quickly through 

error smoothing, as shown in Figure B.. In other words, both lower resolution and small low 

wave number error are the keys to make models converge fast.  

The traditional multigrid method involved residual transfer, which means that the 

variables and their residuals would be transferred from finer grid to courser grid. (see Fig. 4 in 

Fulton et al. 1986). Multigrid methods are very efficient in solving elliptic partial differential 
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equations. However, multigrid methods are usually complicated and might be not suitable for 

solving partial differential equations that possess nonhomogeneous coefficients. Furthermore, 

due to vectorization techniques in MATLAB or python, extra rearrangement procedures in 

multigrid methods would spend much time. Therefore, we turned to develop an interpolation 

method to reduce model runtime. Interpolation method is to solve course grid relaxation to 

obtain a solution first. Then simply apply this solution as an initial guess by interpolation.  

We give elliptical Rankine vortex vorticity and solve streamline. The given vorticity and 

the numerical result streamline are all shown in Figure B.. Note that the solution shows the 

property that the solution for Poisson’s equation, as an elliptical equation, is smooth and less 

sharp than its source. We solve for this problem in three methods: Jacobi iterative method, 

multigrid method, and interpolation method, and their converging rates are shown in Figure B.. 

We found that the multigrid method is still efficient in solving the homogeneous coefficient 

equation like (B.3). The interpolation method can quickly dissipate high wave number error, 

but the error decreasing rate is slow down and approaches the rate of Jacobi iterative method 

after 250 seconds, which indicates the dominate of the low wave number error. 

In summary, based on Jacobi iterative method, we developed an interpolation method, 

which can be as a “simplified” multigrid method that lets our models converge quickly. 
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Figure B.1. The vorticity (shading, in 1/s) and the streamfunction (contour).  

 

 
Figure B.2. Schematic diagram for error smoothing (relaxation) processes. It is shown that after 

several error smoothing procedures, the initial low wave number error (in green solid line) 

decrease slowly (in greed dashed line). However, initial high wave number error (in blue solid 

line) dissipates quickly (in blue dashed line).   
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Figure B.3. Residual versus model run time. Black, blue, and red line represent Jacobi iterative 

method, multigrid method (see Fulton et al. 1986), and interpolation method, respectively. 
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C. Nonlinear Balance Model Solution 

In nonlinear balance relation 

 ∇ϵM = 𝑓∇ϵψ + 2𝐽(𝜓֓, 𝜓֔) (C. 1) 

We can obtain invertibility principle with M only, like (28). We need to solve both M and 𝜓 

at the same time. The strategy we used to solve nonlinear balance invertibility problem is we 

solve M in (C. 2) mainly. Replace (C. 1) into (23), we obtain 

 

⎩
⎪
⎨

⎪
⎧ g

𝜃𝜌𝑃
൜𝑓 +

1

𝑓
ቂ∇2M − 2𝐽 ቀ𝜓

𝑥
, 𝜓

𝑦
ቁቃൠ +

𝜕2M

𝜕𝜃2 = 0

𝜕2M

𝜕𝜃2 = 0

 
, 𝑤ℎ𝑒𝑛 𝜃 ≥ 𝜃ௌ     

, 𝑤ℎ𝑒𝑛 𝜃 < 𝜃ௌ     
 (C. 2) 

Iteration method was used to solve this invertibility problem. We solve for ψ with (C. 1), and 

solve for M with (C. 2). Note that both equations need to perform relaxation. In case that when 

Jacobian term is smaller than linear term, the solution can be easily obtained using interpolation 

method. However, in typhoon-like case, the order of magnitude of Jacobian term can be 

dominated in (C. 1) and therefore the model may not converge. In such a situation, we applied 

several ways to make the model converge. For example, method of continuity, underrelaxation 

method, and lower vertical resolution. Method of continuity is a way that we add up the forcing 

gradually in relaxation procedures to prevent our initial guess deviating from the end solution 

too much. For example, in typhoon-like case we added 3 PVU on the magnitude of PV at 

once and performed relaxation until 20 PVU  was reached. Similarly, underrelaxation can 

slow down the relaxation procedures to prevent singularity point occurs. However, somehow 

higher vertical resolution still makes the model diverge anyway. Therefore, in Figure 18 we 

adjusted the vertical grid number and finally the nonlinear balanced models can produce 

typhoon-like cases. 

  

 



doi:10.6342/NTU202100565

 

36 
 

 
Figure C.1. A snapshot for unstable relaxation case. In nonlinear Jacobian term dominating 

situations, the relaxation method may somehow result in the error smoothing process fails and 

the model diverge. 
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Figure 

 

Figure 1. The schematic diagram for how topography boundary conditions change isentropes in isobaric and isentropic coordinates. (a) Uniform 

grids on isentropic coordinate. The topography is invisible if we focus on the isentropes. (b) In pressure coordinate, isentropes bend upward due 

to topography (cooling effect).  
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Figure 2. The schematic diagram for how isentropes intersect with ground in isobaric and isentropic coordinates. (a) Uniform grids on isentropic 

coordinate. The grey shaded region is massless layer. (b) In pressure coordinate, isentropes bend downward due to surface temperature anomaly 
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Figure 3. The schematic diagram for the isentropic model. The governing equations and the boundary conditions are shown. The gray shaded 

region represents massless layer area which different government equation is applied. 
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Figure 4. The reference state of PV field as a function of 𝜃, computed from (34). The Coriolis coefficient is set as 𝑓 = 7.3 × 10ିହ ≅ 2Ω sin(30୭). 
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Figure 5. Meridional wind field (shading) in (a) isobaric coordinate with 𝜃 (contour, in K) and (b) isentropic coordinate with pressure (contour, 

in hPa) under the effect of topography Φ଴ = 1200 km. The LLJs are with anti-symmetric and anti-cyclonic patterns near the mountain, with 

maximum anticyclonic flow up to 11.3 m/s.  
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Figure 6. As in Figure 5, but with surface temperature anomaly instead of topography. Near the thermal forcing region, the cyclonic flow is induced 

with wind speed up to 20.4 m/s. 
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Figure 7. As in Figure 5, but with both surface heating θ଴ = 6.5 K and topography Φ଴ = 1200 km. There is nearly no wind in physical domain. 

The maximum value v = 0.69 m/s. 
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Figure 8. As in Figure 5, but with both surface heating θ଴ = 11 K and topography Φ଴ = 1200 km. The low-level jets have anti-symmetric and 

cyclonic patterns near the heating mountain, with maximum value v = 8.0 m/s. 
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Figure 9. The relation between Gaussian-Shaped topographic forcing and surface thermal forcing. (a) width = 1000 km,  𝑣ֈռ֓ = 0.1 + 1.9𝛥𝑇 −

0.01Δ𝐻 , with 𝑅ϵ = 0.9984 (b) width = 2000 km, 𝑣ֈռ֓ = 0.1 + 1.8𝛥𝑇 − 0.01𝛥𝐻 ,with 𝑅ϵ = 0.9969. The forcing effects are quite linear 

and nearly independent of the width of the mountain. 
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Figure 10. PV anomaly as inversion layer (shading, in PVU) and isentropes (contour, in K) in pressure coordinate. Inversion layers locate in (a) 

297.5 K (b) 305 K (c) 340 K. 
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Figure 11. Wind difference from Figure 8 (a) due to the existence of inversion layer (shading, in m/s) and isentropes (contour, in K) in pressure 

coordinate. Inversion layers locate in (a) 297.5 K (b) 305 K (c) 340 K.  
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Figure 12. (a) Vertical profiles of PV for no inversion layer (solid line), low-level inversion (Dashed line). mid-level inversion (Dotted line), and 

high-level inversion (Dash-dot line). (b) the maximum wind speed change as a function of 𝜃 level where inversion layer located. Note that there 

is maximum wind speed when the inversion layer being at θ = 305 K. 
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Figure 13. (a) Wind speed (shading), wind vector (quiver), and 𝜃 (contour) at 900hPa. (b) As in Figure 8(a), but we solved a 3-D invertibility 

problem. Both with circular surface thermal forcing 𝜃଴ = 11 K and orographic forcing Φ଴ = 1200 km but with the governing equation being 

(41). The maximum wind is 5.7 𝑚/𝑠. Note that the magnitude of the LLJs is smaller than a 2D source case. 
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Figure 14. As in Figure 13, but with meridionally symmetric conditions. The maximum wind is  𝑚/𝑠. Note that the magnitude of the LLJs 

significantly decreases compared to a 2-D source case. 
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Figure 15. The maximum meridional wind for different aspect ratio. The dash line is a 2-D source case which the wind speed is maximized.  

  



doi:10.6342/NTU202100565

 

52 
 

 

 
Figure 16. Numerical results for (a) linear balance (b) nonlinear balance relation in weak PV anomaly experiments, including induced cyclonic 

flow (shading, in m/s) and pressure (contour, in hPa). The maximum wind speeds are (a) 5.5 m/s (b) 5.1 m/s, respectively. 
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Figure 17. Numerical results for nonlinear balance relation invertibility. (a) A strong typhoon-like PV anomaly (shading, in PVU) (b) Induced 

cyclonic flow (Shading, in m/s) and pressure (contour, in hPa). The maximum wind speed is 32.1 m/s, which located in about 70 km in radius and 

rapidly decays as height and radius increase. 
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Figure 18. Numerical results for (a) linear balance (b) nonlinear balance relation in strong typhoon-like PV anomaly experiments, including induced 

cyclonic flow (shading, in m/s) and pressure (contour, in hPa). The maximum wind speed and minimum pressure are (a) 49.0 m/s and 995 hPa (b) 

32.1 m/s and 976 hPa, respectively. Both of their maximum wind speeds are located in about 70 km. Note that significant center warming and 

pressure fall occur only when gradient wind balance is applied. 
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Figure 19. The invertibility problem with extra upper negative PV anomaly. (a) PV anomaly (shading, in PVU) (b) Wind and pressure difference 

with Figure 18 are presented in shading and contour, respectively. Note that the maximum pressure difference appears right below negative PV 

anomaly and decays as the height decrease. 
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Figure 20. As in Figure 19, but with meridionally symmetric conditions. Note that the maximum pressure difference appears right above the 

positive PV anomaly and spreads more in vertical direction than in Figure 19. 
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Figure 21. (a) Mean wind (quiver, in m/s) averaged over July, 2020 from ERA5 reanalysis data at (a) 200hPa (b) 925hPa level. The shading is (a) 

PV field (in PVU) and (b) elevation (shading, in meter). The contour in (b) is potential temperature.  
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Figure 22. (a) Mean cross sections of meridional wind (shading, in m/s) averaged over the latitude sector 30-35o N from ERA5 reanalysis data and 

(b) interpolation to longitude-potential temperature cross sections from (a). Contour is (a) isentropes (in K) (b) isobars (in hPa). Black region is 

topography and gray shading is the domain out of the physical region. Here we choose p = [1000, 150] hPa. We can identify cyclonic LLJs 

patterns near The Rocky Mountains.  
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Figure 23. (a) Mean cross sections of PV (shading, in PVU) averaged over the latitude sector 30-35o N from ERA5 reanalysis data and (b) 

interpolation to longitude-potential temperature cross sections from (a). Contour is (a) isentropes (in K) (b) isobars (in hPa). Black region is 

topography. 
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Figure 24. Meridional wind field (shading) in (a) isobaric coordinate with 𝜃 (contour) and (b) isentropic coordinate with pressure (contour). Black 

region in (a) is topography and we choose the domain out of p=(1000~150 hPa). The patterns of wind field are similar with observations (Figure 

22).  
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Figure 25. As in Figure 24, but with 𝜃ௌ and the top pressure assigned by interpolation. The patterns of wind field are similar to observations 

(Figure 22), but too large southerly at the east of The Rocky Mountains. 
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Figure 26. As in Figure 25, but with smaller 𝜃ௌ slope at the east of the mountain. The wind field is more like observations (Figure 22).  
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Figure 27. The cross section of meridional winds (shading, in m/s) and θ (contour, in K) at 35oN for the 3-D balanced model results. Lift massless 

layer temperature for (a) 0hPa (b) 25 hPa (c) 50 hPa. The black region is topography. Their northerly wind speed at the west of the mountain is up 

to (a) 18 m/s (b) 16 m/s (c) 12 m/s. 
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Figure 28. (a) The wind difference (shading, in m/s) between lifting massless layer for 50 hPa and 0 hPa and (b) the PV field (shading, in PVU). 

Thin contours are interpolated pressure. Depicting domains are between θ = 295 K and θ = 325 K. Solid, dotted, and dash lines are for no lifting, 

25 hPa lifting, and 50 hPa lifting, respectively. 
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Figure 29. The horizontal wind fields (quiver, in m/s) and θ fields (shading, in K) at 875 hPa for the 3-D balanced model results near the Rocky 

Mountains. Lifting massless layer temperature for (a) 0hPa (b) 25 hPa (c) 50 hPa. The black region is topography. 
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Figure 30. Meridional wind fields (shading, in m/s) in isobaric coordinate with 𝜃 (contour, in K). (a) Upper dynamics case. The PV field value 

below 330 K is zonally averaged and the topography and surface thermal forcing is set to be zero. (b) Lower dynamics case. The PV field value 

above 330 K is zonally averaged. (c) the summation of upper dynamics and lower dynamics wind field. Note that in convenience we directly 

applied the pressure contour of lower dynamics in (c).  
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Figure 31. (a) Mean wind field (quiver, in m/s), potential temperature at 700 hPa, and elevation (shading, in meter). (b) Wind field (quiver, in m/s) 

and PV (shading, in PVU) at 200 hPa. All fields are averaged over July, 2020 from ERA5 reanalysis data. 



doi:10.6342/NTU202100565

 

68 
 

 
Figure 32. Mean wind field (quiver, in m/s) and potential temperature (shading, in K) at 700 hPa. Lifting massless layer temperature for 50 hPa is 

used in this result. 
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Figure 33. (a) Observation (b) numerical result for the cross section of u wind (shading, in m/s) and potential temperature (contour, in K) at 90oE. 
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Figure 34. (a) Observation (b) numerical result for the cross section of u wind (shading, in m/s-1) and potential temperature (contour, in K) at 30oN. 
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Figure 35. (a) Mean wind field (quiver, in m/s) and PV field (shading, in PVU) at 500 hPa. (b) Wind field (quiver, in m/s) and temperature (shading, 

in K) at 850 hPa near Taiwan. All fields are averaged from 0000 UTC to 2400 UTC on 20 July 2015 from ERA5 hourly reanalysis data.  
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Figure 36. Cross sections of PV (shading, in PVU) and potential temperature (contour, in K) at 23oN from ERA5 reanalysis data. This cross section 

contains the Taiwan island.  
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Figure 37. (a) Observed fields (b) numerical results for cross sections of v wind (shading, in /s-1) and potential temperature (contour, in K) for 

23oN near Taiwan. Note that massless layer temperature 𝜃௦ are lifting for 50 hPa. The maximum southerly is about (a) 19.2 m/s (b) 16.5 m/s 
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Figure 38. (a) Mean wind field (quiver, in m/s) and PV field (shading, in PVU) at 500 hPa. (b) Wind field (quiver, in m/s) and temperature (shading, 

in Kelvin) at 850 hPa near Taiwan. The position of the Taiwan island is at about (x, y) = (100, 300) km. Note that massless layer temperature 𝜃௦ 

are lifting for 50 hPa.   

 

 

 

 

 




