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One of the most interesting contexts in which nonlinear system of differential
equations arise is the modeling of interacting populations. Such ecological
models first appeared in the independent work of Lotka and Volterra in the
1920s and comprise a cornerstone of mathematical biology, or biomathemat-
ics. The following nonlinear systems are some examples from the biology.

I Malthusian and Logistic Models The Multhusian model, so named
after the English economist Thomas Malthus of the late eighteenth century.
The Malthusian model, dP/dt = kP , is not realistic for a population that
is naturally limited by environmental factors such as finite space and finite
food supply. A simple model that takes into account the sustainbility of
the environment to the population growth is the logistic model. The logistic
model is credited to Pierre Verhulst, a Belgian mathematician of the mid-
nineteenth century. The model is

dP

dt
= kP (1 − P

M
), P (0) = P0.

The k is called the intrinsic growth rate and M is the carrying capacity
of the environment. Explain why ? Also, can you find the solution of the
equation to be

P (t) =
MP0

P0 + (M − P0)e−kt
.

The logistic model can include the effect of harvesting on such a pop-
ulation. By harvesting, we continuous, deliberate removal of members of
the population at some specified rate. Two types of harvesting are often
considered, proportional harvesting and constant harvesting. Namely, ad-
dition of −βP term (−Rterm) in the logistic equation for the proportional
harvesting(constant harvesting)effect.

II Model of Competition

Two species compete for resources that each requires in order to live, such
as food or territory. It is interesting to note that, through the analysis
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of model, the general conclusion is whether it is weak or strong, a species
survives in the long run if its competitor is weak. If both species are strong,
then the surviving species is determined by initial conditions. A species is
weak (strong) if its competitive strength is less (greater) than unity in the
following equation.

Equation set (1)

(i) The population growth rates, dx/dt, and dy/dt, decrease proportionally
with increasing competitor population.

(ii) In the absence of its competitor, each of the species is governed by a
simple logistic equation with some intrinsic growth rate and environmental
carrying capacity.

dx

dt
= k1x(1 − x − ay)

dy

dt
= k2y(1 − y − bx)

What is the intrinsic growth rate and environmental carrying capacity in
the equations?

Explain the equations (the meaning each term in the equations).

III Model of Predation

Two species live within the same environment, one species the prey, is the
food source for the other species, the predator. The prey’s food source is an
abundant third organism. It is interesting to note that, through the analysis
of model, the general conclusion is if the predator is efficient, as indicated
by ǫ > 1, then the predator population survives in the long run. Otherwise
the predator drives itself toward extinction by consuming too much and re-
producing too little.

Equation set (2)

(i) In the absence of predators, the prey population is governed by a sim-
ple logistic equation with intrinsic growth rate and environmental carrying
capacity.

(ii) In the absence of prey, per capita growth rate of the predator population
is a negative constant (i.e. the predator population declines exponentially).
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(iii) The per capita growth rate of the prey population, decreases propor-
tionally with increasing predator population.

(iv) The per capita growth rate of the predator population, increases pro-
portionally with increasing prey population.

dx

dt
= k1x(1 − x

ǫ
− y)

dy

dt
= −k2y(1 − x)

What are x and y (predator or prey)?

Explain the equation (the meaning of each term in the equations).

IV Modified Competition models

Equation set (3)

The carrying capacity for each species is inversely proportional to the square
root of the population size of the other species.

dx

dt
= x(1 − x

√
y)

dy

dt
= y(1 − y

√
x)

What is the intrinsic growth rate and environmental carrying capacity in
the equations?

Explain the equations (the meaning of each term in the equations).

Equation set (4)

The competitive strength of the x-population decrease as x increase.

dx

dt
= x(1 − 1

2
x − y)

dy

dt
= y(1 − y − x

1 + x
)

Explain the equations (the meaning of each term in the equations).
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Equation set (5)

In the absence of competition, the per capita rate of decline of large popu-
lations is bounded.

dx

dt
= k1x(

1

x
− 1 − ay)

dy

dt
= k2y(

1

y
− 1 − bx)

Explain the equations (the meaning of each term in the equations).

V Modified Predator and Prey models

Equation set (6)

Predatory efficiency decreases with increasing numbers of predators.

dx

dt
= x(1 − 1

2
x − y)

dy

dt
= −1

2
y(1 − x + y)

Explain the equations (the meaning of each term in the equations).

Equation set (7)

Predatory efficiency increases with y when y is small but eventually decrease
as y increases.

dx

dt
= x(1 − x − 1

2
y)

dy

dt
= − 1

10
y(1 − x + y(y − 2))

Explain the equations (the meaning of each term in the equations).

Equation set (8)

In the absence of predators, the per capita rate of decline of large prey
population is bounded.

4



dx

dt
=

1

2
x(−1 +

2

x
− y)

dy

dt
= −y(1 − x)

Explain the equations (the meaning of each term in the equations).

Equation set (9)

The carrying capacity for the predator population is proportional to the
number of prey.

dx

dt
=

1

3
x(1 − x − y)

dy

dt
= − 1

10
y(1 − y

2x
)

Explain the equations (the meaning of each term in the equations).

Equation set (10)

Predators migrate into the environment at a rate proportional to the num-
ber of prey.

dx

dt
=

1

3
x(1 − 1

2
x − y)

dy

dt
= −y(1 − 1

2
x) +

1

2
x

Explain the equations (the meaning of each term in the equations).

VI Models of two cooperative populations

Equation set (11)

dx

dt
= k1x(1 − x

ǫ
+ y)

dy

dt
= k2y(1 − y

β
+ x)
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Why is this a cooperative system?

VII Three-species Community Models

Equation set (12)

Two predators and one prey system with competition between the predator
species.

dx

dt
= x(1 − x − 1

2
y − z)

dy

dt
= y(−1 + 2x − z)

dz

dt
= z(−1 + 3x − 2y)

Describe the relationship among the x, y and z species.

Find the equilibrium points at which x, y, z ≥ 0, and determine whether
each is stable of unstable.

Equation set (13)

dx

dt
= x(−1 − y + 2z)

dy

dt
= y(−1 + 2x − 2z)

dz

dt
= z(−1 − 3x + 2y)

Describe the relationship among the x, y and z species.

Find the equilibrium points at which x, y, z ≥ 0, and determine whether
each is stable of unstable.

Equation set (14)

dx

dt
= x(1 − x + y)

dy

dt
= y(1 − y + x − z)

6



dz

dt
= z(−1 + 2y)

Describe the relationship among the x, y and z species.

Find the equilibrium points at which x, y, z ≥ 0, and determine whether
each is stable of unstable.

Equation set (15)

Consider a three-species community of lions, zebra, and grass. Lions feed
upon the zebra, which in turn feed upon the grass.

dx

dt
= x(1 − y)

dy

dt
= y(−1 + 2x − z)

dz

dt
= z(−1 + y)

What are x, y, and z species?

Equation set (16)

Consider a three-species community of pine trees, oak trees, and squirrels.
Pine trees and oak trees compete for sunlight and nutrients, and squirrels
feed upon acorns from the oak trees.

dx

dt
= x(1 − x − 2y)

dy

dt
= y(1 − x − y − z)

dz

dt
= z(−1 + 3y)

What are x, y, and z species? Explain your solution.
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—————Notes on Matrices————–

(1) Similarity transform of A is S−1AS, provided that S is nonsingular
(detS 6= 0).

(2)Let P and D be eigenvector and eigenvalue matrices of the matrix A
respectively. The eigenvector matrix P has eigenvectors as its columns and
the eigenvalue matrix is a diagonal matrix with all the eigenvalues are the
diagonal components. The eigen-relationship is

AP = PD,

and the diagonalization equation

P−1AP = D.

Note that the diagonalization is a special form of the similarity transform.

(3)
Symmetric matrix: AT = A(aji = aij)
Hermitian matrix: AH = A(a∗

ji = aij)

skew-symmetric matrix: AT = −A(aji = −aij)
skew-Hermitian matrix: AH = −A(a∗

ji = −aij), where * is the complex
conjugate value.
The eigenvalues of Hermitian (skew-Hermitian) matrix is real (imaginary).
The eigenvectors from either Hermitian or skew-Hermitian form a com-
plete vector space and eigenvectors are orthogonal. In another words, the
normalized eigenvectors (vector norm or length is equal to unity) form an
orthonormal set. [Sturm-Liouville theorem]

(4) if A is Hermitian or skew-Hermitian, then the P form from orthonormal
eigenvectors as its columns possesses the property of

PH = P−1

(5) A system of dynamical equations of

du

dt
= Au
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can always be written as

P−1
du

dt
= P−1APP−1u,

P−1
du

dt
= DP−1u.

If A is Hermitian or skew-Hermitian, then the above the equation can be
written (with the help of PH = P−1)

PH du

dt
= DPHu,

or
dv

dt
= Dv,

where v is the projection of u onto different eigenvectors. v = PHu is the
projection formula and the inverse relationship u = Pv is the expansion
formula. Note that v equations are uncoupled equations with each vi com-
ponent possesses exp(λit) time behavior. The imaginary (real) eigenvalues
λi corresponding oscillation (decay or growth) modes. The eigenvectors
often called the normal modes of the system.

(6) We claim that
du

dt
= Au + f ,

is a generalized dynamical system with forcing.
We can study the above system via the coefficent of the single projected
(normal) mode

dv

dt
+ (α + iω)v = g.

An interesting example of the above equation is when the forcing is a peri-
odic function, (i.e., g = f0 exp(iΩt),

dv

dt
+ (α + iω)v = f0 exp(iΩt).

The solution is

v(t) = (v(0) − Rf0) exp(−(α + iω)t) + Rf0 exp(iΩt),

where R = 1/(α + iω + iΩ), the response function.

9


