2nd Homework and Notes for Lifescience Mathematics

Instructor: Hung-Chi Kuo

10/6/2005
The problems and the notes are for the "read to learn" and "write to learn" purposes.

Part I (Notes)

Below are the summary for some important rules in the differentiation.

The Constant Multiple Rule If c is a constant and f is a differential function, then positive integer, then

$$
\frac{d c f(x)}{d x}=c \frac{d f(x)}{d x}
$$

The Sum Rule If f and g are both differentiable, then

$$
\frac{d f(x)+g(x)}{d x}=\frac{d f(x)}{d x}+\frac{d g(x)}{d x}
$$

The Difference Rule If f and g are both differentiable, then

$$
\frac{d f(x)-g(x)}{d x}=\frac{d f(x)}{d x}-\frac{d g(x)}{d x}
$$

The Product Rule If f and g are both differentiable, then

$$
\frac{d f(x) g(x)}{d x}=g(x) \frac{d f(x)}{d x}+f(x) \frac{d g(x)}{d x}
$$

The Quotient Rule If f and g are both differentiable, then

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \frac{d f(x)}{d x}-f(x) \frac{d g(x)}{d x}}{[g(x)]^{2}}
$$

The Chain Rule If f and g are both differentiable and F is the composite function defined by $F(x)=f(g(x))$, then F is differentiable and F^{\prime} is given by the product

$$
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) .
$$

In Leibniz notation, if $y=f(u)$ and $u=g(x)$ are both differentiable function, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

The Power Rule Combined with the Chain Rule If n is any real number and $u=g(x)$ is differentiable, then

$$
\frac{d}{d x}\left(u^{n}\right)=n u^{n-1} \frac{d u}{d x} .
$$

The Power Rule If n is a positive integer, then

$$
\frac{d x^{n}}{d x}=n x^{n-1}
$$

The Power Rule (General Version) If n is any real number, then

$$
\frac{d x^{n}}{d x}=n x^{n-1}
$$

Some useful series for the exponential, logarithmic, and trigononometric functions; and also some useful binomial series are included. Please try to
comprehend deeply the geometrical meaning (especially the low order components) of the series.

$$
\begin{gathered}
\frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4} \cdots,-1<x<1 \\
\frac{1}{(1+x)^{2}}=1-2 x+3 x^{2}-4 x^{3}+5 x^{4}-\cdots,-1<x<1 \\
(1+x)^{\frac{1}{2}}=1+\frac{1}{2} x-\frac{1}{2 \cdot 4} x^{2}+\frac{1 \cdot 3}{2 \cdot 4 \cdot 6} x^{3}-\cdots,-1<x<1 \\
(1+x)^{-\frac{1}{2}}=1-\frac{1}{2} x+\frac{1 \cdot 3}{2 \cdot 4} x^{2}-\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^{3}+\cdots,-1<x<1 \\
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots,-1<x \leq 1 \\
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots,-\infty<x<\infty \\
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots,-\infty<x<\infty \\
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots, \\
e^{-x}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots \\
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
(x+y)^{n}=\sum_{m=0}^{n}\binom{n}{m} x^{n-m} y^{m} \\
e^{-x}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n!} \\
x
\end{gathered}
$$

1 Derive the first 7 of the above series from the Taylor expansion formula, $f\left(x_{0}+x\right)=f\left(x_{0}\right)+f^{(1)}\left(x-x_{0}\right)+\frac{1}{2!} f^{(2)}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\frac{1}{3!} f^{(3)}\left(x_{0}\right)\left(x-x_{0}\right)^{3}+\cdots$, where the $f^{(n)}\left(x_{0}\right)$ is the nth differential of f at x_{0}. [The origin of the Taylor expansion is another important issue which we have discussed in the class. I may give the derivation in the examination.]

2 The differentiation can be defined as

$$
\frac{d f(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\triangle x)-f(x)}{\triangle x}
$$

With the help of the above series, basic definition and/or other rules, derive the following 13 differentiations,
(1) If n is a positive integer, then

$$
\frac{d x^{n}}{d x}=n x^{n-1}
$$

(2)

$$
\frac{d}{d x} \sqrt{x^{2}+y^{2}}=\frac{1}{\sqrt{x^{2}+y^{2}}}
$$

Can you think of any geometric meaning of $d f / d x=0$ in this case.

Derivatives of Logarithmic Functions

(3)

$$
\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a} .
$$

(4)

$$
\frac{d}{d x}(\ln x)=\frac{1}{x} .
$$

(5)

$$
\frac{d}{d x}(\ln u)=\frac{1}{u} \frac{d u}{d x}
$$

Derivative of the Exponential Functions

(6)

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x} .
$$

(7)

$$
\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a .
$$

Derivatives of Trigonometric Functions
(8)

$$
\frac{d}{d x}(\sin (x))=\cos (x) .
$$

(9)

$$
\frac{d}{d x}(\cos (x))=-\sin (x) .
$$

(10)

$$
\frac{d}{d x}(\tan (x))=\sec ^{2}(x)
$$

$$
\begin{equation*}
\frac{d}{d x}(\csc (x))=-\csc (x) \cot (x) . \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d}{d x}(\sec (x))=-\sec (x) \tan (x) \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d}{d x}(\cot (x))=-\csc ^{2}(x) . \tag{13}
\end{equation*}
$$

