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An Overview

1 What is numerical partial differential equations?
Many natural phenomena are formulated by partial
differential equations (PDEs) and by solving the equations
one gains a better understanding on the mechanism of
these phenomena.
The topics of numerical PDEs is about constructing
computational algorithms to analyze problems.

2 Does there exist a general methodology for constructing
numerical schemes?

The answer is "Yes" to certain types of problems. General
speaking we need to construct a well-posed analysis on the
problem wherever possible. This analysis is our guide line
for constructing numerical schemes.
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Well-posedness of Problems Described by Partial
Differential Equations

Example (Model Wave Problem)

∂u
∂t

+
∂u
∂x

= 0, x ∈ [0,1], t ≥ 0,

u(x, t) = f (x), x ∈ [0,1], t = 0,

u(0,t) = g(t), x = 0, t ≥ 0.

Smoothness condition : f (0) = g(0)

We say the problem is well-posed if
1 The solution exists.
2 The solution is unique.
3 The solution is stable.
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Well-posedness II

It would be meaningful if there exists a solution to the
problem.

If the problem does have a solution we need to ask
whether the problem has other solutions.

In physics we consider that a physical quantity is a finite
number and can be measured by certain methods or
devices. Moreover, we wish that the system of a physical
problem is stable, in the sense that when a small
perturbation is introduced into the system, the solution
does not deviate away from the unperturbed one.
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Well-posedness of the Initial Value Problem

Consider the following example.
Example (2π-periodic scalar wave equation)

∂u
∂t

+
∂u
∂x

= 0, x ∈ [0,2π], t ≥ 0, (1)

u(x, t) = f (x), t = 0, (2)

u(p)(0, t) = u(p)(2π, t), u(p) =
∂(p)u

∂x(p)
, p = 0,1,2, . . . (3)

Does the solution exist ?
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Well-posedness of the Initial Value Problem II

Assume

u(x, t) = ûk(t) eikx, k ∈ Z (4)

If (4) is a solution to (1) then

∂u
∂t

+
∂u
∂x

= 0

⇒ dûk(t)
dt

· eikx = (−ik) ûk(t) · eikx

⇒ ûk(t) = ûk(0) · e−ikt

⇒ u(x, t) = ûk(0) · e−ikt · eikx = ûk(0) · eik(x−t)
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Well-posedness of the Initial Value Problem III

Invoking linear superposition we have

u(x, t) =
∞∑

k=−∞
ûk(0)eik(x−t).

Take t = 0

u(x, 0) = f (x) ⇒
∞∑

k=−∞
ûk(0)eikx = f (x)

where ûk(0) is the fourier coefficients of the function f (x),
provided that f has a fourier series representation.
We have a solution to the problem.
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Well-posedness of the Initial Value Problem IV
Uniqueness: Is this the only one ?

Assume that v 6= u is also a solution to the problem, i.e.,

∂v
∂t

+
∂v
∂x

= 0, v(x, 0) = f (x), v(p)(0, t) = v(p)(2π, t).

Let w = u− v then

∂w
∂t

+
∂w
∂x

= 0, w(x, 0) = 0, w(p)(0, t) = w(p)(2π, t).

Hence

w(x, t) =
∞∑

k=−∞
ŵk(0)eik(x−t) and w(x, 0) = 0 =

∞∑
k=−∞

ŵk(0)eikx.

This implies

ŵk(0) = 0 ⇒ w(x, t) = u(x, t)− v(x, t) = 0.

u(x, t) and v(x, t) are identical.

9



Introduction Well-posed Problems Numerical Framework Phase Error Analysis Penalty Method SBP Difference

Well-posedness of the Initial Value Problem V
How do we know a solution is stable?

In addition to the issues concerning the existence and
uniqueness of the solution, we also need to know whether
the solution is stable.

Consider the problem:

∂u
∂t

+
∂u
∂x

= 0,

u(x, 0) = f (x),

u(p)(0, t) = u(p)(2π, t).

Define the energy of the
system as
Definition

E(t) =
∫ 2π

0
u2(x, t) dx
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Energy of Physical Systems

We observe similar definitions of energy for various types
of physical systems, for example

1 in electromagnetism

Energy =
∫

Ω

1
2
εE2 +

1
2
µH2 dx

2 in fluid dynamics

Energy =
∫

Ω

ρ(V · V) dΩ
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Energy Estimate for
∂u
∂t

+
∂u
∂x

= 0

Multiplying u to the equation and integrating over the entire
domain, we have the energy rate equation

dE(t)
dt

=
d
dt

∫ 2π

0
u2(x, t) dx =

∫ 2π

0
2u

∂u(x, t)
∂t

dx

=
∫ 2π

0
2u

(
−∂u

∂x

)
dx = −

∫ 2π

0

∂u2

∂x
dx = −u2(x, t)

∣∣∣2π

0
= 0

Hence,

E(t) = E(0)⇒
∫ 2π

0
u2(x, t) dx =

∫ 2π

0
f 2(x) dx
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Well-posedness of the Initial Value Problem VI
Energy of a Perturbed System

Let us now consider the following problems.

Unperturbed Problem:

∂u
∂t

+
∂u
∂x

= 0

u(x, 0) = f (x)

u(p)(0, t) = u(p)(2π, t)

Perturbed Problem:

∂v
∂t

+
∂v
∂x

= 0

v(x, 0) = f (x) + ε(x), |ε(x)| << 1

v(p)(0, t) = v(p)(2π, t)
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Well-posedness of the Initial Value Problem VII
How do we know a solution is stable?

Let w = v− u

∂w
∂t

+
∂w
∂x

= 0

w(x, 0) = ε(x)

w(p)(0, t) = w(p)(2π, t)

Then∫ 2π

0
w2(x, t) dx =

∫ 2π

0
(v(x, t)− u(x, t))2 dx =

∫ 2π

0
ε2(x) dx

At any given time the difference between u and v measured in
the sense of energy is bounded by the energy of the initial
perturbation.
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Consistency
Define the grid points:

xj = j · h = j · 2π

N + 1
, j = 0,1,2, . . . ,N

Let

u(xj , t) = uj(t)

Recall that
∂u(x, t)

∂x
can be approximated by

forward difference:
uj+1 − uj

h
+O(h)

backward difference:
uj − uj−1

h
+O(h)

central difference:
uj+1 − uj−1

2h
+O(h2) 15
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Upwind Scheme:
dvi

dt
= −vi − vi−1

h
I

Define the numerical solution as

vi(t), i = 0,1,2, ...,N

satisfying the semi-discrete scheme

dvi

dt
+

vi − vi−1

h
= 0, i = 0,1, ...,N

vi(t) = f (xi) = fi
v−1 = vN,

16
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Upwind Scheme:
dvi

dt
= −vi − vi−1

h
II

Consistency

Substituting the exact solution ui(t) = u(xi , t) to the scheme

dvi

dt
+

vi − vi−1

h
= 0

we get the truncation error (TE)

TE =
dui

dt
+

ui − ui−1

h
=

∂u(xi , t)
∂t

+
∂u(xi , t)

∂x
+O(h) =O(h).

Observe that TE→ 0 as h→ 0. The scheme is consistent.
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Upwind Scheme:
dvi

dt
= −vi − vi−1

h
III

Energy Estimate

N∑
i=0

vi
dvi

dt
h = −

N∑
i=0

vivi +
N∑

i=0

vivi−1

≤ −
N∑

i=0

v2
i +

1
2

N∑
i=0

v2
i +

1
2

N∑
i=0

v2
i−1

= −1
2

N∑
i=0

v2
i +

1
2

N∑
i=0

v2
i−1 (periodicity v−1 = vN)

= 0
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Upwind Scheme:
dvi

dt
= −vi − vi−1

h
IV

Energy Estimate

Hence

1
2

d
dt

N∑
i=0

v2
j h≤ 0 ⇒

N∑
i=0

v2
i h ≤

N∑
i=0

f 2
i h

The scheme has a bounded energy estimate for a given
terminal time.
Recall the energy estimate of the continuous system:∫ 2π

0
u2(x, t) dx =

∫ 2π

0
f 2(x) dx.
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Down Wind Scheme:
dvi

dt
= −vi+1 − vi

h
I

Consider the scheme:

dvi

dt
= −vi+1 − vi

h
i = 0,1,2, ...,N

vi(0) = f (xi) = fi
vN+1 = v0

Consistency Check: Substituting the exact solution ui(t) to the
scheme we get the truncation error (TE)

TE =
dui

dt
+

ui+1 − ui

h
=

∂u(xi , t)
∂t

+
∂u(xi , t)

∂x
+O(h) =O(h).

Observe that TE→ 0 as h→ 0. The scheme is consistent20
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Down Wind Scheme:
dvi

dt
= −vi+1 − vi

h
II

Energy Estimate

dE(t)
dt

=
N∑

i=0

vi
dvi

dt
h = −

N∑
i=0

vi+1vi +
N∑

i=0

v2
i

=
1
2

N∑
i=0

v2
i +

1
2

N∑
i=0

v2
i −

N∑
i=0

vi+1vi +
1
2

N∑
i=0

v2
i+1 −

1
2

N∑
i=0

v2
i+1

=
1
2

N∑
i=0

(vi − vi+1)2 ≥ 0 (= 0 when constant)
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Down Wind Scheme:
dvi

dt
= −vi+1 − vi

h
III

Energy Estimate

The fact that

dE(t)
dt

=
N∑

i=0

vi
dvi

dt
h≥ 0

leads to

N∑
i=0

v2
i h≥

N∑
i=0

f 2
i h.

We have a scheme with an energy estimate that can not be
bounded by the prescribed data.
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What Does the Bounded Energy Estimate Imply?
Energy of the Error Equation

Consider vectors

a = [a0, a1, ..., aN]T, b = [b0, b1, ..., bN]T

we define the vector inner product and norm as

(a,b)h = aTbh =
N∑

i=0

aibih, ||a||2 = (a,a)h

Useful inequality: For real numbers a and b, we have

2ab≤ a2 + b2

For vectors a and b

(a,b)2h ≤ ||a|| · ||b||
23
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What Does the Bounded Energy Estimate Imply?
Energy of the Error Equation (Upwind Scheme)

Recall the scheme

dvi

dt
+

vi − vi−1

h
= 0

vi(0) = f (xi) = fi
v−1 = vN,

Let ui(t) = u(xi , t). Then

dui

dt
+

ui − ui−1

h
= tei , tei = O(h)

ui(0) = f (xi) = fi
u−1 = uN,

Define ei = ui − vi . Then ei satisfies

dei

dt
+

ei − ei−1

h
= tei ,

ei(0) = 0

e−1 = eN,

We now examine the energy of the discrete system.
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What Does the Bounded Energy Estimate Imply?
Energy of the Error Equation (Upwind Scheme)

Denote

e = [e0, e1, ..., eN]T, te = [te0, te1, ..., teN]T

1
2

d||e||2

dt
=

N∑
i=0

ei
dei

dt
h =

N∑
i=0

(ei − ei−1)ei +
N∑

i=0

ei teih

≤ −1
2

N∑
i=0

(ei − ei−1)2 +
1
2

N∑
i=0

e2
i h +

1
2

N∑
i=0

te2
i h

≤ 1
2
||e||2 +

1
2
||te||2

25
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What Does the Bounded Energy Estimate Imply?
Energy of the Error Equation (Upwind Scheme)

e−t d||e||2

dt
− e−t||e||2 ≤ e−t||te||2

⇒ d
dt

(
e−t||e||2

)
≤ e−t||te||2

⇒e−t||e(t)||2− e0||e(0)||2 ≤
∫ t

0
e−ξ||te(ξ)||2 dξ

⇒||e(t)||2 ≤ et
∫ t

0
e−ξ||te(ξ)||2 dξ

⇒||e(t)||2 ≤ et
(

max
ξ∈[0,t]

||te(ξ)||2
) ∫ t

0
e−ξ dξ

⇒||e(t)||2 ≤
(

max
ξ∈[0,t]

||te(ξ)||2
)

(et − 1) 26
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What Does the Bounded Energy Estimate Imply?
Energy of the Error Equation (Upwind Scheme)

From

||e(t)||2 ≤
(

max
ξ∈[0,t]

||te(ξ)||2
)

(et − 1)

we have
1 As time evolves the error may grow exponentially.
2 For constant t, et − 1 is fixed. As h→ 0,

maxξ∈[0,t] ||te(ξ)||2 → 0. Hence

||e(t)||2 = ||u(t)− v(t)||2 → 0

implying convergence.
27
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What Does the Bounded Energy Estimate Imply?
Energy of the Error Equation (Down Wind Scheme)

For down wind scheme one can follow a similar and yield

||e|| ≥ min
ξ∈[0,t]

c(t)
h2

λ0
(e

λ0t
h − 1)

where c(t) = O(1) and λ0 > 0 is a constant. From the result we
observe that

1 as h→ 0 h2(e
λ0t

h − 1)
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Classical Theory on Convergence

Theorem (Lax-Richtmyer Equivalence Theorem)
A consistent approximation to a linear well-posed partial
differential equation is convergent if and only if it is stable.

Remark:

We need a consistent scheme which has an energy
estimate bounded by the prescribed data.

The upwind scheme is consistent and stable. Thus, the
numerical solution converges to the exact solution.

The downwind scheme is consistent and unstable. Thus,
the numerical solution does not converge to the exact one.
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Phase Error Analysis I

Consider the linear wave problem

∂u
∂t

= −c
∂u
∂x

, 0≤ x≤ 2π, (5)

u(x, 0) = eikx.

The solution to equation (5) is a travelling wave

u(x, t) = eik(x−ct)

with phase speed c

30
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Phase Error Analysis II
We use the equidistant grid

xj = j ∆x =
2πj

N + 1
, j ∈ [0, . . . ,N].

The 2m-order approximation of the derivative of a function f (x) is

d f
d x

∣∣∣∣
xj

=
m∑

n=1

αm
n Dn f (xj)

where

Dn f (xj) =
f (xj + n∆x)− f (xj − n∆x)

2n∆x
=

fj+n − fj−n

2n∆x

αm
n = −2(−1)n

(m!)2

(m− n)! (m+ n)! 31
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Phase Error Analysis III

In the semi-discrete version of Equation (5) we seek a vector
v = (v0(t), v1(t), . . . , vN(t)) which satisfies

dvj

dt
= −c

m∑
n=1

αm
n Dnvj , vj(0) = eikxj . (6)

We may interpret the grid vector, v, as a vector of grid point
values of a trigonometric polynomial, v(x, t), with v(xj , t) = vj(t),
such that

∂v(x, t)
∂t

= −c
m∑

n=1

αm
n Dnv(x, t), v(x, 0) = eikx (7)

If v(x, t) satisfies Equation (7), the solution to Equation (6) is
given by v(xj , t).
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Phase Error Analysis IV

The solution to Equation (7) is

v(x, t) = eik(x−cm(k)t),

where cm(k) is the numerical wave speed. The dependence of
cm on the wave number k is known as the dispersion relation.

The phase error em(k), is defined as the leading term in the
relative error between the actual solution u(x, t) and the
approximate solution v(x, t):∣∣∣∣u(x, t)− v(x, t)

u(x, t)

∣∣∣∣ =
∣∣∣1− eik(c−cm(k))t

∣∣∣ ' |k(c− cm(k))t| = em(k).
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Phase Error Analysis V

Applying phase error analysis to the second-order finite
difference scheme

∂v(x, t)
∂t

= −c
v(x+ ∆x, t)− v(x−∆x, t)

2∆x
,

v(x, 0) = eikx,

we obtain the numerical phase speed

c1(k) = c
sin(k∆x)

k∆x
.

For ∆x� 1,

c1(k) = c

(
1− (k∆x)2

6
+O

(
(k∆x)4)) ,

confirming the second-order accuracy of the scheme.
34
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Phase Error Analysis VI

For the fourth-order scheme

∂v(x, t)
∂t

=− c
12∆x

(
v(x− 2∆x, t)− 8v(x−∆x, t)

+ 8v(x+ ∆x, t)− v(x+ 2∆x, t)
)
,

we obtain

c2(k) = c

(
8 sin(k∆x)− sin(2k∆x)

6k∆x

)
.

For ∆x� 1 we recover the approximation

c2(k) = c

(
1− (k∆x)4

30
+O

(
(k∆x)6)) .

illustrating the expected fourth-order accuracy.
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Phase Error Analysis VII

Denoting e1(k, t) as the phase error of the second-order
scheme and e2(k, t) as the phase error of the fourth-order
scheme, with the corresponding numerical wave speeds c1(k)
and c2(k), we obtain

e1(k, t) = kct

∣∣∣∣1− sin(k∆x)
k∆x

∣∣∣∣ , (8)

e2(k, t) = kct

∣∣∣∣1− 8 sin(k∆x)− sin(2k∆x)
6k∆x

∣∣∣∣ . (9)
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Phase Error Analysis VIII

Introduce

p =
N + 1

k
=

2π

k∆x
(the number of points per wavelength)

ν =
kct
2π

(the number of periods in time)

Rewriting the phase error in term of p and ν yields

e1(p,v) = 2πv

∣∣∣∣1− sin(2πp−1)
2πp−1

∣∣∣∣ , (10)

e2(p,v) = 2πv

∣∣∣∣1− 8 sin(2πp−1)− sin(4πp−1)
12πp−1

∣∣∣∣ . (11)
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Phase Error Analysis IX

The leading order approximation to (10) is

e1(p,v)' πv
3

(
2π

p

)2

, (12)

e2(p,v)' πv
15

(
2π

p

)4

(13)

from which we immediately observe that the phase error is
directly proportional to the number of periods ν i.e., the error
grows linearly in time.
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Phase Error Analysis X

We arrive at a more straightforward measure of the error of the
scheme by introducing pm(εp, ν) as a measure of the number of
points per wavelength required to guarantee a phase error,
ep ≤ εp, after ν periodic for a 2m-order scheme. Indeed, from
(12) we directly obtain the lower bounds

p1(ε, v)≥ 2π

√
vπ

3εp
(14)

p2(ε, v)≥ 2π 4

√
πv

15εp
(15)
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Phase Error Analysis XI

Example

εp = 0.1 Consider the case in which the desired phase error is
≤ 10%. For this relatively large error,

p1 ≥ 20
√

v, p2 ≥ 7 4
√

v.

ε = 0.01When the desired phase error is within 1%, we have

p1 ≥ 64
√

v, p2 ≥ 13 4
√

v.

ε = 10−5

p1 ≥ 643
√

v, p2 ≥ 43 4
√

v

40
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Phase Error Analysis XII

Sixth-order method
As an illustration of the general trend in the behavior of the
phase error, we give the bound on p3(εp, ν) for the sixth-order
centered-difference scheme as

p3(εp, ν) ≥ 2π 6

√
πν

70εp
,

for which the above special cases become

p3(0.1, ν) = 5 6
√

ν, p3(0.01, ν) = 8 6
√

ν, p3(10−5, ν) = 26 6
√

ν,

confirming that when high accuracy is required, a high-order is
the optimal choice.
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Energy Estimate of IBVP

Consider the initial boundary value problem:

∂u
∂t

+
∂u
∂x

= 0 x ∈ [0,1] t ≥ 0

u(x, 0) = f (x) x ∈ [0,1] t = 0

u(−1,t) = g(t) x = 0 t ≥ 0.

42
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Energy Estimate of IBVP
Multiplying u to the partial differential equation, integrating over
the domain and applying the boundary condition, we have∫ 1

0
u
∂u
∂t

dx = −
∫ 1

0
u
∂u
∂x

dx

⇒ 1
2

dE
dt

= − 1
2

u2

∣∣∣∣1
0

=
1
2

u2(0, t)− 1
2

u2(1, t), E(t) =
∫ 1

0
u2(x, t) dx

⇒ dE
dt

= g2(t)− u2(1, t) ≤ g2(t)

Integrating the energy rate equation with respect to time and
invoking the initial condition, we have

E(t) ≤ E(0) +
∫ t

0
g2(ξ) dξ ≤ E(0) + t ·G, G = max

ξ∈[0,t]
g2(ξ)

or
∫ 1

0
u2(x, t)dx≤

∫ 1

0
f 2(x)dx+ t ·G
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Schemes for the Model Wave Equation

We now construct finite difference schemes for the model wave
problem

∂u
∂t

+
∂u
∂x

= 0, x ∈ [0,1], t ≥ 0,

u(x, t) = f (x), x ∈ [0,1], t = 0,

u(0,t) = g(t), x = 0, t ≥ 0.

We define the grid points as

xi = ih, h = 1/N, i = 0,1,2, ...,N

Denote vi(t) the approximation of u(xi , t) at xi .
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Upwind Scheme I
Strongly Enforced Boundary Condition

Consider the scheme

dvi

dt
+

vi − vi−1

h
= 0, i = 1,2, . . . ,N

vi(0) = f (xi)
v0(t) = g(t)

Accuracy: first order in space
Stability

N∑
i=1

vi
dvi

dt
h = −

N∑
i=1

vi(vi − vi−1)
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Upwind Scheme II
Strongly Enforced Boundary Condition

1
2

d
dt

ED(t) =
1
2

d
dt

N∑
i=1

h v2
i (t) = −

N∑
i=1

v2
i +

N∑
i=1

vivi−1

= −1
2

N∑
i=1

v2
i −

1
2

N∑
i=1

v2
i +

N∑
i=1

vivi−1 −
1
2

N∑
i=1

v2
i−1 +

1
2

N∑
i=1

v2
i−1

= −1
2

N∑
i=1

v2
i −

1
2

N∑
i=1

(vi − vi−1)2 +
1
2

N−1∑
i=0

v2
i

=
1
2

v2
0−

1
2

v2
N −

1
2

N∑
i=1

(vi − vi−1)2

=
1
2

g2(t)− 1
2

v2
N −

1
2

N∑
i=1

(vi − vi−1)2 ≤ 1
2

g2(t) 46
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Upwind Scheme III
Strongly Enforced Boundary Condition

Then

dED(t)
dt

≤ g2(t) ⇒ ED(t) ≤ ED(0) +
∫ t

0
g2(ξ) dξ,

or explicitly

N∑
i=1

h v2
i (t) ≤

N∑
i=1

h f2
i +

∫ t

0
g2(ξ) dξ

Recall that for the continuous system we have∫ 1

0
u2(x, t) dx≤

∫ 1

0
f 2(x) dx+

∫ t

0
g2(ξ) dξ
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Upwind Scheme IV
Weakly Enforced Boundary Condition

Consider the scheme

dvi

dt
+

vi − vi−1

h
= 0 i = 1,2, . . . ,N

dv0

dt
+

v1− v0

h
= −τ(v0− g(t))

vi(0) = f (xi) i = 0,1,2, . . . ,N

τ : free parameter.
(1) τ → 0 (the scheme behaves like the PDE)

dv0

dt
+

v1− v0

h
= −τ(v0− g(t)) → 0

(2) τ →∞ (the scheme behaves like the boundary condition)

v0− g(t) =
1
τ

(
dv0

dt
+

v1− v0

h

)
→ 0
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Upwind Scheme V
Weakly Enforced Boundary Condition

Accuracy: 1st order in space
Stability: We need to check whether the discrete energy

ED(t) =
N∑

i=0

v2
i (t)h

has an estimate bounded by the prescribed data and τ .
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Upwind Scheme VI
Weakly Enforced Boundary Condition

Multiplying vih to the scheme and summing up the resultant
equations, we have

N∑
i=0

vi
dvi

dt
h = −

N∑
i=1

vi(vi − vi−1)− v0(v1− v0)− τ h v0(v0− g(t))

Recall
−

N∑
i=1

vi(vi − vi−1) =
1
2

v2
0−

1
2

v2
N −

1
2

N∑
i=1

(vi − vi−1)2

1
2

dED

dt
=

1
2

v2
0−

1
2

v2
N −

1
2

N∑
i=2

(vi − vi−1)2− 1
2
(v2

1− 2v1v0 + v2
0)

− v0v1 + v2
0− τ h v0(v0− g(t))

= −1
2

v2
N −

1
2

N∑
i=2

(vi − vi−1)2− 1
2

v2
1 + v2

0(1− τ h) + τ h v0 g(t)50
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Upwind Scheme VII
Weakly Enforced Boundary Condition

dED

dt
=− v2

N − v2
1−

N∑
i=2

(vi − vi−1)2 + 2(1− τh)
(

v0 +
τhg(t)

2(1− τh)

)2

− τ2h2g2(t)
2(1− τh)

Take 1− τh < 0 ⇒ τ >
1
h

dED

dt
≤ τ2h2g2(t)

2(τh− 1)

If τh = 2

dED

dt
≤ 2g2(t) ⇒ ED(t) ≤ ED(0) + 2

∫ t

0
g2(ξ) dξ
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Upwind Scheme VII
Weakly Enforced Boundary Condition

Remarks:

1 By properly choosing the value of the parameter τ the
scheme has a bounded energy estimate, implying stability.

2 Since τ > 1/h as h→ 0, τ →∞, the equation at x0 = 0,

v0− g(t) =
1
τ

(
dv0

dt
+

v1− v0

h

)
converges to the boundary condition as h→ 0.
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Central Difference Scheme I
Strongly Enforced Boundary Condition

Consider the scheme

dvi

dt
+

vi+1 − vi−1

2h
= 0 i = 1,2, . . . ,N

dvN

dt
+

vN − vN−1

h
= 0

v0(t) = g(t)
vi(0) = f (xi)

Accuracy: 2nd order at interior points
1st order at boundary points
globally second order1

1Gustafsson (1975) The Convergence Rate for Difference Approximations
to Mixed Initial Boundary Value Problems
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Central Difference Scheme II
Strongly Enforced Boundary Condition

Let cN =
1
2

, ci = 1 for i 6= N. Multiplying civih to the scheme we

have

N∑
i=1

civi
dvi

dt
h = −

N−1∑
i=1

vi

(
vi+1 − vi−1

2

)
− vN

(
vN − vN−1

2

)

⇒ d
dt

N∑
i=1

civ
2
i h = −

N−1∑
i=1

vi(vi+1 − vi−1)− vN(vN − vN−1)

= −
N−1∑
i=1

vivi+1 +
N−1∑
i=1

vivi−1 − v2
N + vNvN−1

54



Introduction Well-posed Problems Numerical Framework Phase Error Analysis Penalty Method SBP Difference

Central Difference Scheme III
Strongly Enforced Boundary Condition

d
dt

N∑
i=1

civ
2
i h = −

N−1∑
i=1

vivi+1 +
N∑

i=1

vivi−1 − v2
N

= −
N−1∑
i=1

vivi+1 +
N−1∑
i=0

vi+1vi − v2
N

= v1v0− v2
N

We have no idea on bounding the discrete energy rate.

55



Introduction Well-posed Problems Numerical Framework Phase Error Analysis Penalty Method SBP Difference

Central Difference Scheme IV
Weakly Enforced Boundary Condition

Consider the scheme

dvi

dt
+

vi+1 − vi−1

2h
= 0 i = 1,2, . . . ,N− 1

dvN

dt
+

vN − vN−1

h
= 0

dv0

dt
+

v1− v0

h
= −τ(v0− g(t))

1
2

v0
dv0

dt
h +

N−1∑
i=1

vi
dvi

dt
h +

1
2

vN
dvN

dt
h

= −
N−1∑
i=1

vi(vi+1 − vi−1)
2

− vN(vN − vN−1)
2

− (v1− v0)v0

2
− τhv0

2
(v0− g(t))
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Central Difference Scheme V
Weakly Enforced Boundary Condition

d
dt

N∑
i=0

civ
2
i h = v1v0− v2

N − v1v0 + v2
0− τhv2

0 + τhv0g(t)

= −v2
N + (1− τh)v2

0 + τhv0g(t)

= −v2
N + (1− τh)

[
v2

0 +
τh

1− τh
v0g(t) +

(
τh

2(1− τh)

)2

g2(t)

]

− (1− τh)
(

τh
2(1− τh)

)2

g2(t)

If τh = 2 d
dt

N∑
i=0

civ
2
i h = −v2

N − (v0− g(t))2 + g2(t) ≤ g2(t)

⇒
N∑

i=0

civ
2
i (t)h≤

N∑
i=0

ci f 2
i h +

∫ t

0
g2(ξ) dξ 57
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Central Difference Scheme VI
Weakly Enforced Boundary Condition

Remarks:
1 By properly choosing the value of τ the scheme has a

discrete energy estimate that is bounded by the prescribed
data fi and g(t) and it is independent of N. This implies
stability.

2 A scheme is stable at the semi-discrete level does not
ensure the stability of the scheme at the fully discrete level.
This is because the stability condition at the semidiscrete
level is only a necessary condition.

3 The advantage of using semidiscrete analysis is that we
can check whether the boundary closure will cause
instability, and possibly fix the problem. 58
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Central Difference Scheme VI
Matrix Vector Representation

Let v = [v0(t) v1(t) · · · vN(t)] The scheme has a matrix-vector
representation as

d
dt



v0

v1

v2

...

vN−1

vN


+

1
2h



−2 2 0

−1 0 1
. . .

0 −1 0 1
. . .

. . .
. . .

. . .
. . .

−1 0 1
0 −2 2





v0

v1

v2

...

vN−1

vN


=



−τ(v0 − g(t))

0

0

...

0

0


or

d
dt

v(t) + Dv(t) = −τ(v0 − g(t))e0, e0 = [1 0 0 · · · 0 0]T

Define H = diag(
1
2
, 1, 1, · · · , 1,

1
2
)

vTH
dv
dt

h + vT H D hv(t) = −τ(v0 − g(t))vT H e0 h
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Central Difference Scheme VII
Interesting Property: Summation-by-Parts Rule

Observe

H D h =
1

2



1/2 0

0 1
. . .

. . .
. . .

. . .

. . . 1 0
0 1/2





−2 2 0

−1 0 1

. . .
. . .

. . .

−1 0 1

−2 2



=
1

2


−1 1 0
−1 0 1

. . .
. . .

. . .
−1 0 1

−1 1

 =
1

2


−1

0

. . .

1

 +
1

2


0 1 0
−1 0 0

. . .
. . .

. . .
0 0 1

−1 0


=QS + QA

So

vTHDhv = vTQSv + vTQAv =
1
2
(−v2

0 + v2
N)
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Central Difference Scheme VII
Interesting Property: Summation-by-Parts Rule

Hence

vTH
dv
dt

h = −vT H D hv− τ(v0− g(t))vTH e0 h

1
2

d
dt

[
vTHvh

]
=

1
2

v2
0−

1
2

v2
N −

τh
2

v0(v0− g(t))

The rule

vTHDhv = vTQSv + vTQAv =
1
2
(−v2

0 + v2
N)

in fact mimic the action of∫ 1

0
u(x)

∂u(x)
∂x

dx =
1
2

u(1)− 1
2

u(0)
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From Low-Order to High-Order Methods

To construct a high-order scheme we basically seek a
differentiation matrix D (resulting from central and
one-sided difference scheme) and a positive definite matrix
H such that a rule similar to

vTHDhv = vTQSv + vTQAv =
1
2
(−v2

0 + v2
N)

exists.

Notice that a summation-by-parts rule is only for estimating
the energy of the system. To stably impose boundary
conditions we still use the penalty methodology.
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Basic Concepts and Notations I
Let I = [0,1]. Consider two functions f (x) and g(x) defined on I.
We define the continuous L2 inner product and norm for
functions over I as

(f , g) =
∫

I
f g dx, ||f ||2I = (f , f )

Consider I2 = [0,1]× [0,1]. The continuous L2 inner product
and norm for functions over I2 are defined as

(f , g) =
∫

I2
f g dx dy, ||f ||2I2 = (f , f ).

Likewise, for functions defined on I3 = [0,1]× [0,1]× [0,1] we
denote the continuous L2 inner product and norm for functions
over I3 as

(f , g) =
∫

I3
f g dx dy dz, ||f ||2I3 = (f , f ). 63
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Basic Concepts and Notations II
We introduce a set of uniformly spaced grid points:

xi = ih, i = 0,1,2, ...,L, h = 1/L,

where h is the grid distance. Consider two vectors, f , g ∈ VL+1,
explicitly given by

f = [f0, f1, ..., fL]
T , g = [g0, g1, ..., gL]

T ,

We define a weighted discrete L2 inner product and norm, with
respect to the step size h and the matrix M , for vectors as

(f , g)h,M = hfTMg, ||f ||2h,M = (f , f )h,M.

If M is an identity matrix then

(f , g)h = hfTg, ||f ||2h = (f , f )h.
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Basic Concepts and Notations III

To numerically approximate a function u and its derivative
du/dx, we consider the difference approximation of the form

Pvx = h−1Qv, or vx = Dv = h−1P−1Qv, (16)

where

v = [v0, v1, ..., vL]
T , vx = [vx0, vx1, ..., vxL]

T ,

denote the numerical approximations of u and u′ evaluated at
the grid points, and D, P, Q ∈ ML+1.
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Basic Concepts and Notations IV

Let u and ux denote vectors with components being,
respectively, the collocated values of the functions u and du/dx
at the grid points, i.e.,

u = [u(x0), u(x1), ..., u(xL)]
T , ux =

[
du(x0)

dx
,

du(x1)
dx

, ...,
du(xL)

dx

]T

.

The truncation error te of the scheme Eq.(16) is defined by

Pte = Pux− h−1Qu,

and |te| = O(hα
x , hβ

x ) where α and β are the convergence rates
of the approximation at interior and boundary grid points,
respectively.
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Basic Concepts and Notations V

We devise implicit difference methods for approximating the
differential operator d/dx by constructing a special class of P
and Q satisfying the following properties;

SBP1: The matrix P is symmetric positive definite.

SBP2: The matrix Q is nearly skew-symmetric and satisfies the
constraint

Q + QT

2
= diag(q00, 0, ..., 0, qLL), q00 < 0, qLL = −q00 > 0.

where q00 and qLL are the upper most and lower most diagonal

elements of Q.
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Summation-by-Parts Rule in 1D Space I

Lemma (Summation-by-Parts)

Consider the difference operator D = h−1P−1Q where P and Q
satisfy SBP1 and SBP2, respectively. We have

(v,Dv)h,P = (v,h−1P−1Qv)h,P = q00v
2
0 + qLLv2

L,

for v ∈ VL+1.
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Summation-by-Parts Rule in 1D Space II

Proof.
First we rewrite the inner product as

(v,Dv)h,P =
(
v,h−1Qv

)
h = vTQSv + vTQAv

where QS = (Q + QT)/2 and QA = (Q−QT)/2 are, respectively,
the symmetric and anti-symmetric parts of the matrix Q. Notice
that vTQAv = 0 since QA is antisymmetric. Thus, we have

(v,Dv)h,P = vTQSv = q00v
2
0 + qLLv2

L,

where the last equality is due to SPB2. This completes the
proof. �
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One Dimensional Advection Equation I

Consider the advection equation

∂u
∂t

+
∂u
∂x

= 0, x ∈ I, t ≥ 0, (17)

with the initial condition

u(x, 0) = f (x), x ∈ I, (18)

and the boundary condition

u(0,t) = g(t), t ≥ 0. (19)
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One Dimensional Advection Equation II

Equation (17) leads to an energy rate

d
dt
||u||2I = g2(t)− u2(1, t),

For well-posed analysis it is sufficient to consider g = 0, and we
obtain an energy estimate

||u(x, t)||2I ≤ ||u(x, 0)||2I = ||f (x)||2I . (20)
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One Dimensional Advection Equation III

Consider a equally spaced partition:

xi = ih, h = 1/L.

With vi denoting the approximation of u(xi), we seek a
numerical solution v of the form

v(t) = [v0(t), v1(t), ..., vL(t)]
T ,

which satisfies the semidiscrete scheme

dv
dt

+ h−1P−1Qv = h−1τq00(v0− g(t))P−1e0, (21a)

v(0) = f = [f (x0), f (x1), ..., f (xL)]T, (21b)

where P and Q are defined by Eq.(16), and e0 = [1, 0, ..., 0]T.72
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One Dimensional Advection Equation IV

Theorem

Assume that there exists a smooth solution to the one dimen-
sional wave problem described by Eqs.(17-19). Then Eq.(21a)
is stable at the semi-discrete level provided that

τ ≥ 1.

Moreover, v(t) satisfies the estimate

||v(t)||2h,P ≤ ||f ||2h,P.
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One Dimensional Advection Equation V

Proof.
Multiplying hvTP to the scheme and invoking Lemma 11 we
obtain

1
2

d
dt
||v||2h,P = −(q00v

2
0 + qLLv2

L) + τv0q00(v0− g(t)).

For the stability analysis, it is sufficient enough to consider the
scheme subject to g(t) = 0. Hence,

1
2

d
dt
||v||2h,P = q00(τ − 1)v2

0− qLLv2
L ≤ q00(τ − 1)v2

0,

where the last inequality results from qLL > 0 demanded by
SBP2. Recall that q00 < 0.
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One Dimensional Advection Equation VI

So, taking τ ≥ 1 immediately yields a non-increasing energy
rate

1
2

d
dt
||v||2h,P ≤ 0,

which leads to the estimate

||v(t)||2h,P ≤ ||v(0)||2h,P = ||f ||2h,P.

Thus, the scheme is stable. This completes the proof. �
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Important Reference: Bo Strand (1994)

Difference method

vx =
1
h

Q v,

Summation-By-Parts

vHvx =
1
h

vHQv =
1
2
(v2

N − v2
0)
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Fourth-Order (Class 1: Accuracy α = 4, β = 3)

H =


[

HU

]
. . . [

HL

]


hQ =



⊗ × × ×
× ⊗ × × × ×
× × ⊗ × × ×
× × × ⊗ × × ×
× × × × ⊗ × ×

× × ⊗ × ×
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .


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Bo Strand (Class 2: Accuracy α = 6, β = 3)

H = diag [h00, h11, h22, . . . . . . ]

hQ =



⊗ × × × ×
× ⊗ × × × ×
× × ⊗ × × ×
× × × ⊗ × × ×
× × × × ⊗ × × ×

× × × × ⊗ × × ×
× × × ⊗ × × ×

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .


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Carpenter, Gottlieb, Abarbanel (1994)

Difference Method:

P vx = Qv

Summation-by-parts rule:

vTHPvx = vTHQv =
1
2

(
v2

N − v2
0

)
P is tridiagonal (implicit method) and HP is symmetric positive
definite.

Class 1: Accuracy α = 4, β = 3

Class 2: Accuracy α = 6, β = 5 (H is a identity matrix)
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