
1.  Introduction
Heavy rainfall is one of the major causes of natural disasters on the mountainous island of Taiwan 
(Chang,  1996; Teng et  al.,  2006). Among all modern instruments for weather observations, the precipi-
tation derived from the rain gauges and the weather radar is frequently compared against each other. As 
a common part of the standard weather service operation, rain gauges directly measure the amount of 
liquid precipitation falling to the ground. The measurement contains certain bias in nature (Ciach, 2002; 
Collier, 1986; Habib et al., 1999, 2001; Martinaitis et al., 2015; Seo & Breidenbach, 2002; Sevruk, 2005; Yang 
et al., 1998), and the spatial density and locations of rain gauges are limited. Alternatively, weather radar 
not only provides quantitative precipitation estimation (QPE) over a larger area with high spatial resolution 
but also incurs errors in the estimation process. Currently, most QPE is based on the Z–R relation developed 
by Marshall and Palmer (1948). Many studies had proposed adjustments to the precipitation in addition 
to the values derived from the Z–R relationship. Bellon and Austin (1984) and Austin (1987) analyzed the 
errors of QPE and quantitative precipitation forecasting (QPF) and proposed adjustment schemes based 
on the growth and the movement of nearby storms. Steiner et al. (1999) improved the QPE results by 10% 
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cases and excelled in detecting heavy-rainfall events. This method could improve advanced warning 
for flash flooding and make water resource management more effective. In ongoing research, we seek 
to extend our approach to integrate the heterogeneous data sources and to be applied to precipitation 
forecasting.
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in terms of the root-mean-square-errors (RMSEs) by using high-quality gauge data and storm-based bias 
adjustment. Chen et al. (2010) showed that the bias adjustment might come from topographic information 
of the rain gauge as well. Alternatively, Chiang et al. (2007) used Artificial Neural Network to adjust the 
parameters in the Z–R relation and improved the QPE results. Besides improving the formula of the Z–R re-
lationship, advancements in radar technology also improved the performance of QPE. Multiradar networks 
have been shown to enhance the QPE results with composite reflectivity data (Crosson et al., 1996; Gourley 
et al., 2002; Wu et al., 2012; Zhang et al., 2011). Also, new generation radar systems such as S-band polari-
metric radar can provide extra information and hence improve the QPE results (Jou et al., 2015).

The Z–R relationship originated from a point-to-point mapping between radar reflectivity and raindrop 
size distribution (Marshall & Palmer, 1948). The form of this relation, Z = aRb, is robust and can be effi-
ciently applied to the whole domain, but using the same set of formula coefficients (a and b) for all loca-
tions or weather types could cause errors. Among the adjustments proposed by later studies, some used 
location-specific parameters (Chen et al., 2010; Chiang et al., 2007), and others added corrections based on 
extra information. For example, the evolution and movement of weather systems were significant modifiers 
(Austin, 1987; Bellon & Austin, 1984; Steiner et al., 1999), and using multiple radars or new radar designs 
is also helpful (Crosson et al., 1996; Gourley et al., 2002; Jou et al., 2015; Wu et al., 2012; Zhang et al., 2011).

In this study, we proposed a volume-to-point (VTP) approach to estimate precipitation from radar reflectiv-
ity in the Taipei basin. There are 6 million people, about one third of the Taiwan population, who reside in 
the Taipei basin. The hill surrounding the Taipei basin can contribute to the heavy rain event in the metro-
politan area of Taipei in the summer (Kuo & Wu, 2019). Most radar products cover a large spatial area that 
contains the information of weather systems such as convection patterns and convective cells. The merger 
of convective cells can produce heavy precipitation of more than 100 mm/h in the Taipei basin (Miao & 
Yang, 2020). The data volume can span through both time and space. Using data in a broader spatial region 
is similar to the concept of the box-based spatial feature construction proposed by Han et al. (2017). And if 
we aggregate successive radar images over some time, the resulting data volume contains both spatial and 
temporal information. With proper analysis methods, we hope to extract the features concerning the evolu-
tion and movement of convective cells with adequate analyses. Therefore, the basic concept of using data 
volume is similar to that of Steiner et al. (1999). We also want to note that in this study, “volume” refers to 
its mathematical meaning, “space of three or more dimensions,” rather than the “volume scan” commonly 
used in radar research.

Furthermore, by mapping the data volume directly to each rain gauge, the point, we can establish loca-
tion-specific relationships sensitive to the topographic characteristics. Hence, we called this data-driven 
approach “VTP” in contrast to the Z–R relationship, which is of point-to-point nature. Figure 1 illustrates 
the difference between the point-to-point and VTP approach.

The complexity of the proposed VTP framework is twofold. Because the aggregated data volume may con-
tain more information than the precipitation at one particular location, finding a proper processing scheme 
to extract significant features is essential. The second fold of complexity comes from the relationship be-
tween the data volume and the precipitation intensity by the rain gauges. Marshall and Palmer (1948) had 
shown that this relationship should be in the form of the power law and hence implied that we could start 
from nonlinear regressors. The studies of machine learning focus on searching patterns in data and offer 
an efficient approach to tackle our complexity problem. Given a data volume and corresponding values 
of precipitation, supervised machine learning models can optimize the predictive performance of the un-
known relationship (Bishop, 2006; Hastie et al., 2009). In addition to the conceptual VTP framework, we 
also proposed one implementation based on state-of-the-art machine learning techniques. The feasibility 
and effectiveness of the proposed method were evaluated based on observation data during 2013–2016 over 
the Taipei basin.

The following section describes details of the data used in this study, as well as in-depth elaborations of 
the implementation of the VTP approach. The evaluation results are shown in Section 3, and we will give 
concluding remarks of the proposed method in Section 4.
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2.  Methods and Data
2.1.  Data

In this study, we used two observation data sets from the year 2013 to 2016. Quantitative Precipitation 
Estimation and Segregation Using Multiple Sensor (QPESUMS) Mosaic data set is a product developed by 
the Central Weather Bureau (CWB) and the National Severe Storm Laboratory (Chiou et al., 2004; Gourley 
et al.,  2002). It features multiple radar integration with outputting the maximum reflectivity on two-di-
mensional grids. The product provided by CWB has resolutions of 0.0125° × 0.0125° within the area of 
21.8875°–25.3125°N/120.0000°–122.0125°E, and the update interval is 10 min. More specifically, for each 
hour, the dimension of the data volume is 6 × 162 × 275. Figure 2 demonstrates one snapshot of the data 
volume at June 14, 2014 19:10–20:00 (LST) during typhoon Hagibi. As for the point target data, we used 
the hourly precipitation from 45 CWB weather stations over the Taipei area as the ground truth. Figure 3 
shows the locations of the 45 stations. The weather stations are in the metropolitan area on the low eleva-
tion (around 20 m above mean sea level) as well as over the surrounding hills (no more than 1,000 m above 
mean sea level) of the Taipei basin. The Feitsui reservoir, the main water supply to millions of residents, is 
located at the hill to the south of the Taipei basin. Watershed areas are highlighted in blue in Figure 3, and 
the large area in the center represents the Feitsui reservoir watershed region.

2.2.  The VTP Framework

Conceptually, the VTP framework aims to establish the relationship between a data volume and the corre-
sponding precipitation at a specific location. In this study, we explicitly define the point data as the hourly 
precipitation of each CWB station, and the volume data as the six 10-min snapshot QPESUMS image before 
the precipitation record. For example, for the rain gauge measure of one station at 1200Z, the corresponding 
data volume is the collection of QPESUMS data at 1100Z, 1110Z, 1120Z, 1130Z, 1140Z, and 1150Z.
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Figure 1.  Conceptual illustrations of (a) point-to-point and (b) volume-to-point framework for quantitative precipitation estimation.
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With this setup, the precise objective of the proposed QPE scheme was to map a data volume of size 6 × 162 
× 275 to one precipitation value. Mathematically, this is a regression problem, where we take the input of 
267,300 independent variables, X, and look for an optimal function, f(X), that yields the best fit to the pre-
cipitation, Y. Although fitting a quarter-million independent variables with linear regression is feasible for 
modern computers, this problem requires more sophisticated treatments. Marshall and Palmer (1948) have 
shown that the relationship between radar reflectivity and precipitation follows a power law. First, the rela-
tionship between spatial-temporal variability and local precipitation is highly nonlinear and hence requires 
a nonlinear mapping. Second, the main reason we use a large data volume is to attempt to cover the evolu-
tion and movement of convective over hills. The cloud dynamics in the presence of hill upslope dynamical 
forcing from the wind as well as the merger of cloud cells are essential for the heavy precipitation process 
in the Taipei basin (e.g., Kuo & Wu, 2019; Miao & Yang, 2020). To fulfill this goal, we need algorithms that 
can extract spatial and temporal characteristics from the data volume rather than assuming each grid point 
is independent. Therefore, statistical models that can perform representation learning and nonlinear curve 
fitting are more suitable for our task.
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Figure 2.  The QPESUMS Mosaic data of June 14, 2014 19:10–20:00 (UTC+8). At this moment, Taiwan was under the influence of typhoon Hagibi. QPESUMS, 
Quantitative Precipitation Estimation and Segregation Using Multiple Sensor.
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Machine learning models offer various approaches to regression problems, from simple linear regression to 
decision trees, kernel methods, and neural networks (Hastie et al., 2009). While simple models generalize 
better, complicated models can capture nonlinear relationships with the risk of “overfitting.” The recent 
development in deep neural networks has shown significant improvement in classification and regression 
tasks. By stacking multiple hidden layers in the neural networks, the deep learning methods can discover 
intricate structures in high-dimensional data (LeCun et al., 2015). Among several variations of deep neural 
networks, the convolutional neural networks (CNNs) were designed to process data that come in the form 
of multiple arrays, which is particularly suitable for the QPESUMS data volume.

Figure 4 shows the VTP framework used in this study. As illustrated in Figure 4, we use a machine learn-
ing model to extract features from the data volume and then map these features to the precipitation of the 
given weather station. Conventional machine learning methods divided the whole tasks into two processes: 
feature extraction and regression. Extracting meaningful features from the data set used to rely on do-
main knowledge and repetitive try-and-error. Since LeCun first proposed CNN in 1990 (LeCun et al., 1990, 
1998), CNN-based methods have been applied with great success to various tasks in image processing and 
computer vision. The strength of CNNs mainly came from their fundamental elements, the convolutional 
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Figure 3.  Locations of 45 CWB weather stations over the greater Taipei metropolitan area. The blue shaded areas represent the watershed regions. CWB, 
Central Weather Bureau.

Figure 4.  The architecture of the volume-to-point framework used in this study. The input data volume consists of successive QPESUMS images within the 
hour; the output data point is represented by the rain gauge records of the weather station. Machine learning algorithms are then applied to extract features and 
to learn the mapping from data. QPESUMS, Quantitative Precipitation Estimation and Segregation Using Multiple Sensor.
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filters (or sometimes referred to as kernels). These convolutional filters are small two-dimensional arrays 
that scan through the original matrix and then output a new one. With convolutional kernels, the images 
are processed to preserve local geometric information, rather than treating each point in the image as an 
independent variable. The use of convolutional kernels is similar to applying two-dimensional operators, 
such as divergence and curl, to vector fields. And this feature makes CNNs potentially suitable for meteoro-
logical data sets. For example, Han and colleagues used CNNs for convective storm nowcasting and showed 
descent improvement (Han et al., 2020). Shi et al. (2015) and Kalchbrenner and Sønderby (2020) demon-
strated using sequential versions of CNNs (ConvLSTM) for precipitation nowcasting.

The CNNs yielded state-of-the-art performance in computer vision tasks such as image classification and 
object detection. Unlike traditional neural networks, CNNs employed convolutional kernels and other tech-
niques such as pooling and dropout to form the layers of the network. The convolutional layers consist of 
multiple kernels that scan through the data matrix input from the previous layer. Max-pooling layers are de-
signed to reduce the size of the preceding data matrix by a factor of k by keeping the maximal value of every 
k-by-k submatrix. The dropout layers randomly select the parameters to be ignored in one training trial and 
serve as a regularization technique to prevent overfitting in CNNs. Dhillon and Verma (2019) reviewed the 
research milestones and compared several significant variations of CNNs. The CNN used in this study was 
based on the architecture suggested by Simonyan and Zisserman with minor modifications (Reichstein 
et al., 2019; Simonyan & Zisserman, 2015). The detailed structure of our implantation is shown in Figure 5.

2.3.  Evaluation Methods

The VTP framework is based on statistical models, and hence we need to split the data into the training set 
and the testing set to evaluate the proposed methods. In our experiments, we used data from 2013 to 2015 
as the training data and then evaluated the trained models against the data of 2016.

In this study, we evaluated the performance of the VTP framework in two different aspects, that is, the 
general errors in estimated precipitation and the ability to detect heavy rainfall. For general performance, 
we used the RMSE between the measured and predicted rain as the metrics. For the heavy-rainfall cases, we 
used the hit-rate of correctly estimated rain larger than 30 mm/h as the primary indicator. Also, the same 
metrics of the CWB operational scheme (based on Z–R relation) were derived for comparison.
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Figure 5.  The structure of the convolutional neural network (CNN) model used in this study. Four convolutional blocks are stacked to extract spatial–temporal 
features from the 6 × 275 × 162 data volume. The bottom layers further reduce the feature dimension to 64 and then output the estimated precipitation or 
whether the rainfall will exceed a threshold.
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Besides the general performance, we also wanted to demonstrate the effect of spatial location and weather 
events. Thus, the performance metrics at different altitudes and locations, as well as the case of typhoon 
Megi (September 25, 2016 to September 28, 2016), were presented in the next section.

3.  Results
The proposed VTP approach was trained with the data between 2013 and 2015 and then evaluated with 
the data in 2016. The averaged RMSE of the proposed VTP method of the 45 stations is 1.86 mm/h, while 
the same metric of the CWB operational QPE scheme is 1.90 mm/h. In general, the proposed approach 
performed slightly better (i.e., with smaller RMSE), but the difference is not significant (p = 0.67 for paired 
t test). Figure 6 illustrates the RMSE of two methods for each of the 45 stations arranged in ascending ele-
vation. As shown in Figure 6, the performance gain of the proposed VTP framework was more evident at 
low and high altitudes.

Figure 7 shows the RMSE on the map. The spatial distributions of RMSE are similar for both QPE methods 
(Figures 7(a) and 7(b)). The southeastern part of the map is the central mountain ridge that blocked most 
radar signals, and hence both methods showed higher RMSE in that region. For better comparison, Fig-
ure 7(c) shows the difference of RMSE between two QPE schemes, while positive values indicate that the 
VTP approach performed better. In Figure 7(c), we can see the proposed framework showed advantages in 
two areas: the center of the Taipei basin (at the center of the map with dense dots) and the northern part of 
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Figure 6.  The RMSE between two QPE schemes and the weather station records at the stations' elevation. The 
operational QPE scheme used by CWB is shown in orange, and the proposed volume-to-point (VTP) approach is shown 
in blue. RMSE, root-mean-square-error; QPE, quantitative precipitation estimation; CWB, Central Weather Bureau.
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the southeastern mountains, which is the watershed area of Feitsui reservoir (shaded on the map). These 
two regions are located next to one of the radar networks, Wufenshan radar (RCWF), and benefited from 
better data quality.

Besides estimating the amount of precipitation, the VTP framework can also leverage the classification 
form of machine learning models to detect heavy-rainfall events. The CWB officially defined the heavy 
rainfall over the Taiwan area as precipitations reach 40 mm/h or 80 mm/day. However, in 2016, 5 of the 45 
stations never recorded hourly rainfall larger than 40 mm. Therefore, we used 30 mm/h, close to the 99.5th 
percentile of 1960–2010 (Su et al., 2012), as the threshold of heavy-rainfall events in this study. Figure 8 
shows the hit-rate of the heavy-rainfall events, that is, the probabilities that QPE methods did report heavy 
rainfall when it occurred, of the CWB operational QPE scheme and the VTP approach. As shown in the 
figure, the proposed method has higher hit-rates for most stations (39 out of 45) with an average of 0.8, in 
contrast to conventional QPE's averaged hit-rate of 0.34. The high hit-rate came with a price of a high false-
alarm rate of 0.0134 on average compared to 0.0005 for the CWB's method. Figure 9 illustrates the receiver 
operating characteristic of two QPE schemes, where we can see the gain in hit-rate exceeding the loss in 
false-alarm-rate. Noted that the statistics are derived from each hour of the entire 2016, while the probabili-
ty of heavy-rainfall events was less than 0.1%. With the low prevalence in nature, a low false-alarm-rate can 
be expected for any classification algorithm.

Besides the general statistics, Figure 10 illustrates the QPE results during the typhoon Megi (September 
25, 2016 to September 28, 2016) at weather station 466920 (Taipei) and 466930 (Zhuzihu). As shown in 
Figure 10, the VTP framework can detect high precipitation more accurately while overestimating the rain 
trace. Also, the CWB operational scheme tended to underestimate the amount of rainfall in most cases.

From the results above, the VTP method is shown to perform equally well as the state-of-the-art QPE meth-
od in general situations, and its advantages lied in heavy-rainfall scenarios. In the next section, we will 
discuss the robustness and possible extensions of the proposed framework.

4.  Concluding Remarks
4.1.  Sensitivity of the Implementation

The VTP framework used in this study is a data-driven approach. One common obstacle data-driven meth-
ods often encounter is generalizability. That is to say, is the performance stable in various situations, or is it 
only specific for the data set used for evaluation? In Figure 6, we can see the variations of RMSE are similar 
between the two QPE methods. The standard deviations of RMSE among 45 stations were 0.43 and 0.42 for 
the CWB scheme and VTP, respectively. This negligible difference suggested that the VTP approach is as 
robust as Z–R based methods across locations. The results reported in the previous section were based on 
models trained with QPESUMS data between 2013 and 2015 and tested against 2016. We tested a different 
training-testing data split of 2013–2014 against 2015, and the results were similar (the mean and standard 
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Figure 7.  The RMSE between QPE schemes and the weather station records. The operational QPE scheme used by CWB is shown in the left panel (a), and 
the proposed VTP approach is shown in the middle (b). The right panel (c) illustrates the RMSE difference, where positive values represent locations the VTP 
method performed better. The shaded area in (c) represents the watershed regions of Feitsui reservoir. RMSE, root-mean-square-error; QPE, quantitative 
precipitation estimation; CWB, Central Weather Bureau; VTP, volume-to-point.
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deviation of RMSEs among 45 stations are 1.98 and 0.37, respectively). The test suggested that the VTP 
framework is also robust across time.

Even though this framework is robust, unlike the Z–R relationship, the model trained with the data of a 
particular rain gauge cannot be applied to another weather station. This fact may limit this method to only 
locations with historical records of precipitation, while the Z–R formula can be used on all grid points with 
radar signals.

4.2.  Extending the VTP Framework

The method proposed in this study is a framework based on machine learning models, and hence it inher-
ited certain advantages.

First of all, the field of machine learning progressed rapidly in recent years. Though the implementation 
used in this study was based on the state-of-the-art model of CNNs, it is very likely future advancements in 
machine learning can offer better models for such problems. In that case, we can easily replace the feature 
extraction or the machine learning model shown in Figure 4 with more advanced methods without chang-
ing the whole procedure.
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Figure 8.  The hit-rate of detecting events of 30 mm/h rainfall of 45 CWB stations and the stations' altitude. The 
operational QPE scheme used by CWB is shown in orange, and the proposed VTP approach is shown in blue. Stations 
are arranged in ascending altitude. CWB, Central Weather Bureau; QPE, quantitative precipitation estimation; VTP, 
volume-to-point.
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Second, though our implementation used only the QPESUMS data set 
as the input data source, the proposed framework does not limit itself to 
homogeneous data input. For example, the advancement of radar tech-
nology can offer much more information than reflectivity. Also, remote 
sensing data can be integrated as part of the data volume and be pro-
cessed with the same procedure.

The third advantage is that it is straightforward to transform this frame-
work from QPE to forecasting. Machine learning models are mathemat-
ical mappings between the input and the output data. In terms of QPE, 
the input is the radar reflectivity, and the output is the corresponding 
precipitation at the same time. If we change the output to the rain in the 
future, then the same framework will represent the forecasting. Figure 11 
illustrates the RMSE of using the same 1-h QPESUMS data and machine 
learning methods for QPF. We selected five weather stations with human 
crews for more precise visualization. As shown in Figure 11, the errors in-
creased rapidly after 1 or 2 h. The averaged correlation coefficients of 1-h 
QPF is 0.3, and it dropped to 0.07 for 4-h QPF, which indicated that the 
QPF results lose its predictive power in time quickly. This result was not 
surprising because we only use 1 h of QPESUMS data for prediction. To 
improve the QPF, a more extended period of radar observations or other 
information sources such as the numerical model output of thermody-
namic and dynamic variables could be beneficial. Specifically, the tem-
perature profile of convective instability and the three-dimensional wind 
of cloud dynamics can be incorporated into the proposed method. The 
wind field information may be important in the problem we have that 
target area covered some in terrain area. On the other hand, the proposed 
method with the current setting can produce results compare favorably 
with state-of-the-art Z–R method with some additional advantages in 
certain areas. With the results as the reference benchmark, the proposed 
VTP framework can integrate heterogeneous data sources, as discussed 
in the earlier paragraph, to improve the QPF forecast.

4.3.  Summary

In this study, we introduced the VTP framework for QPE from radar re-
flectivity. Instead of making inferences based on the signal of a single 
point, our approach used a data volume covering a larger spatial area and 
a more extended period. The aggregated data volume can provide infor-
mation about the existence and movement of weather systems, and it is 
more likely to include cloud dynamics associated with the precipitation 
process (Miao & Yang, 2020). The CNNs were chosen to implement the 
VTP framework to extract essential features from a massive data set. We 
trained the model with data in 2013–2015 and evaluated the QPE perfor-
mance in 2016.

In comparison to the operational QPE scheme used by the CWB, the VTP 
framework performed comparably well in general cases and excelled in 
detecting heavy-rainfall events. In terms of geographical locations, our 
method performed particularly well in the highly populated area and the 
major watershed (Figure 7(c)), which is significant in practice. These two 

regions locate next to the primary radar in Taipei, and hence we infer the proposed method may directly 
benefit from good data quality.

Due to the limitation of the chosen CNN architecture, the features learned by the models were difficult to 
visualize, as suggested in McGovern et al. (2019). However, the presented results indicated that providing a 
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Figure 9.  The receiver operating characteristics of two QPE schemes. 
The CWB operational scheme is shown in orange, and the VTP method 
is in blue. The dashed lines represent the diagonal, and the points locate 
more to the upper and right represent higher prediction skill. QPE, 
quantitative precipitation estimation; CWB, Central Weather Bureau; VTP, 
volume-to-point.
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more extensive data volume and using a specific model for each rain gauge did improve the ability to detect 
heavy-rainfall events.

Finally, we want to emphasize that the presented work can serve as a baseline of the VTP framework for fu-
ture development. As discussed in the previous section, the proposed framework can be further extended to 
conduct precipitation forecasts and to incorporate heterogeneous data sources. Our preliminary test showed 
that with a data volume consists of only 1-h radar reflectivity, our approach can perform very well as a QPE 
scheme and can provide a reference in forecasting. As ongoing work, we will further explore the feasibility 
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Figure 10.  The recorded and estimated precipitation during September 25, 2016 00:00 to September 28, 2016 23:00 of weather station Taipei (466920, (a)) and 
Zhuzihu (466930, (b)). The measured record is shown in black, the CWB operational scheme is shown in orange, and the VTP is shown in blue. CWB, Central 
Weather Bureau; VTP, volume-to-point.
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of integrating different data types such as numerical model wind field and temperature profile and use the 
VTP framework as a QPF scheme in extreme precipitation scenarios.

Data Availability Statement
The hourly precipitation data of 45 weather stations can be downloaded from the Open Data Platform 
(OSF) at https://osf.io/pkxu6/. The features extracted from the QPESUMS data volume and the estimated 
precipitations of the 45 weather stations can be downloaded from our OSF repository, along with the codes 
creating figures reported in this study.

References
Austin, P. M. (1987). Relation between measured radar reflectivity and surface rainfall. Monthly Weather Review, 115(5), 1053–1070. 

https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2
Bellon, A., & Austin, G. L. (1984). The accuracy of short-term radar rainfall forecasts. Journal of Hydrology, 70(1), 35–49. https://doi.

org/10.1016/0022-1694(84)90112-4
Bishop, C. (2006). Pattern recognition and machine learning. Springer-Verlag.
Chang, J.-C. (1996). Natural hazards in Taiwan. GeoJournal, 38(3), 251–257.
Chen, S.-T., Liu, B.-W., & Yu, P.-S. (2010). QPESUMS rainfall adjustment using support vector machines and radial basis function neural 

network. Journal of Taiwan Agricultural Engineering, 56(3), 43–56.
Chiang, Y.-M., Chang, F.-J., Jou, B. J.-D., & Lin, P.-F. (2007). Dynamic ANN for precipitation estimation and forecasting from radar obser-

vations. Journal of Hydrology, 334(1), 250–261. https://doi.org/10.1016/j.jhydrol.2006.10.021
Chiou, Y.-M., Chang, F.-J., Jou, B. J.-D., & Lin, P.-F. (2004). Quantitative precipitation estimation using multiple sensors. Paper presented at 

8th Conference on Atmospheric Sciences, Tao-Yuan, Taiwan.
Ciach, G. J. (2002). Local random errors in tipping-bucket rain gauge measurements. Journal of Atmospheric and Oceanic Technology, 20, 

752–759.
Collier, C. G. (1986). Accuracy of rainfall estimates by radar. Part I: Calibration by telemetering raingauges. Journal of Hydrology, 83, 

207–223.
Crosson, W. L., Duchon, C. E., Raghavan, R., & Goodman, S. J. (1996). Assessment of rainfall estimates using a standard Z–R relation-

ship and the probability matching method applied to composite radar data in Central Florida. Journal of Applied Meteorology, 35(8), 
1203–1219. https://doi.org/10.1175/1520-0450(1996)035<1203:AOREUA>2.0.CO;2

Dhillon, A., & Verma, G. K. (2019). Convolutional neural network: A review of models, methodologies and applications to object detection. 
Progress in Artificial Intelligence, 9, 85–112. https://doi.org/10.1007/s13748-019-00203-0

YO ET AL.

10.1029/2020EA001340

12 of 13

Figure 11.  The results of using the same VTP implementation for hourly rainfall forecasting. Only five stations are tested, and they are arranged in ascending 
altitude. The correlation coefficient dropped rapidly in the first 3 h, and the RMSE reached peaks in 3–4 h for all stations. The results suggested that we 
should not infer the future precipitation for more than 3 h by using 1-h QPESUMS data. VTP, volume-to-point; RMSE, root-mean-square-error; QPESUMS, 
Quantitative Precipitation Estimation and Segregation Using Multiple Sensor.

Acknowledgments
This research was supported by the 
Taiwan Ministry of Science and 
Technology through grants MOST-
107-2111-M-034-003, MOST-108-
2119-M-002-022, and MOST-108-
2625-M-034-002. The authors would 
also like to show our gratitude to the 
Central Weather Bureau and Data Bank 
for Atmospheric and Hydrologic Re-
search for providing the raw QPESUMS 
data and the hourly precipitation data.

https://osf.io/pkxu6/
https://doi.org/10.1175/1520-0493(1987)115%3c1053:RBMRRA%3e2.0.CO;2
https://doi.org/10.1016/0022-1694(84)90112-4
https://doi.org/10.1016/0022-1694(84)90112-4
https://doi.org/10.1016/j.jhydrol.2006.10.021
https://doi.org/10.1175/1520-0450(1996)035%3c1203:AOREUA%3e2.0.CO;2
https://doi.org/10.1007/s13748-019-00203-0


Earth and Space Science

Gourley, J. J., Maddox, R. A., Howard, K. W., & Burgess, D. W. (2002). An exploratory multisensor technique for quantitative estimation of 
stratiform rainfall. Journal of Hydrometeorology, 3(2), 166–180. https://doi.org/10.1175/1525-7541(2002)003<0166:AEMTFQ>2.0.CO;2

Habib, E., Krajewski, W. F., & Kruger, A. (2001). Sampling errors of tipping-bucket rain gauge measurements. Journal of Hydrological 
Engineering, 6, 59–166.

Habib, E., Krajewski, W. F., Nespor, V., & Kruger, A. (1999). Numerical simulation studies of rain gauge data correction due to wind effect. 
Journal of Geophysical Research, 104, 723–734.

Han, L., Sun, J., & Zhang, W. (2020). Convolutional neural network for convective storm nowcasting using 3-D Doppler weather radar data. 
IEEE Transactions on Geoscience and Remote Sensing, 58(2), 1487–1495. https://doi.org/10.1109/TGRS.2019.2948070

Han, L., Sun, J., Zhang, W., Xiu, Y., Feng, H., & Lin, Y. (2017). A machine learning nowcasting method based on real-time reanalysis data. 
Journal of Geophysical Research: Atmospheres, 122, 4038–4051. https://doi.org/10.1002/2016JD025783

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). 
Springer-Verlag.

Jou, B. J.-D., Jung, U. C.-J., & Hsiu, R. R.-G. (2015). Quantitative precipitation estimation using S-band polarimetric radars in Taiwan 
Meiyu season. Atmospheric Sciences, 43(2), 91–113.

Kalchbrenner, N., & Sønderby, C. (2020). A neural weather model for eight-hour precipitation forecasting [Blog]. Google AI Blog. http://
ai.googleblog.com/2020/03/a-neural-weather-model-for-eight-hour.html

Kuo, K.-T., & Wu, C.-M. (2019). The precipitation hotspots of afternoon thunderstorms over the Taipei Basin: Idealized numerical simula-
tions. Journal of the Meteorological Society of Japan. Series II, 97(2), 501–517. https://doi.org/10.2151/jmsj.2019-031

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel, L. D. (1990). Handwritten digit recognition 

with a back-propagation network. In D. S. Touretzky (Ed.), Advances in neural information processing systems (Vol. 2, pp. 396–404). 
Morgan-Kaufmann.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 
86, 2278–2324. https://doi.org/10.1109/5.726791

Marshall, J. S., & Palmer, W. M. K. (1948). The distribution of raindrops with size. Journal of Meteorology, 5(4), 165–166. https://doi.
org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2

Martinaitis, S. M., Cocks, S. B., Qi, Y., Kaney, B., Zhang, J., & Howard, K. (2015). Understanding winter precipitation impacts on rain gauge 
observations within an automated real-time system. Journal of Hydrometeorology, 16, 2345–2363.

McGovern, A., Lagerquist, R., Gagne, D. J., Jergensen, G. E., Elmore, K. L., Homeyer, C. R., & Smith, T. (2019). Making the black box more 
transparent: Understanding the physical implications of machine learning. Bulletin of the American Meteorological Society, 100(11), 
2175–2199. https://doi.org/10.1175/BAMS-D-18-0195.1

Miao, J.-E., & Yang, M.-J. (2020). A modeling study of the severe afternoon thunderstorm event at Taipei on 14 June 2015: The roles of 
sea breeze, microphysics, and terrain. Journal of the Meteorological Society of Japan. Series II, 98(1), 129–152. https://doi.org/10.2151/
jmsj.2020-008

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat (2019). Deep learning and process understand-
ing for data-driven Earth system science. Nature, 566(7743), 195–204. https://doi.org/10.1038/s41586-019-0912-1

Seo, D. J., & Breidenbach, J. P. (2002). Real-time correction of spatially nonuniform bias in radar rainfall data using rain gauge measure-
ments. Journal of Hydrometeorology, 3, 93–111.

Sevruk, B. (2005). Rainfall measurement: Gauges. In M. G. Anderson (Ed.), Encyclopedia of hydrological sciences (pp. 529–536). John Wiley 
& Sons Ltd.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W., & Woo, W. (2015). Convolutional LSTM Network: A machine learning approach for 
precipitation nowcasting. In Proceedings of the 28th International Conference on Neural Information Processing Systems (Vol. 1, pp. 
802–810).

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. Paper presented at International 
Conference on Learning Representations.

Steiner, M., Smith, J. A., Burges, S. J., Alonso, C. V., & Darden, R. W. (1999). Effect of bias adjustment and rain gauge data quality control 
on radar rainfall estimation. Water Resources Research, 35, 2487–2503.

Su, S.-H., Kuo, H.-C., Hsu, L.-H., & Yang, Y.-T. (2012). Temporal and spatial characteristics of typhoon extreme rainfall in Taiwan. Journal 
of the Meteorological Society of Japan. Series II, 90, 721–736. https://doi.org/10.2151/jmsj.2012-510

Teng, W.-H., Hsu, M.-H., Wu, C.-H., & Chen, A. S. (2006). Impact of flood disasters on Taiwan in the last quarter century. Natural Hazards, 
37(1), 191–207. https://doi.org/10.1007/s11069-005-4667-7

Wu, W., Kitzmiller, D., & Wu, S. (2012). Evaluation of radar precipitation estimates from the national mosaic and multisensor quantitative 
precipitation estimation system and the WSR-88D precipitation processing system over the conterminous United States. Journal of 
Hydrometeorology, 13(3), 1080–1093. https://doi.org/10.1175/JHM-D-11-064.1

Yang, D., Goodison, B. E., Metcalfe, J. R., Golubev, V. S., Bates, R., Pangburn, T., & Hanson, C. L. (1998). Accuracy of NWS 8” standard 
nonrecording precipitation gauge: Results and application of WMO intercomparison. Journal of Atmospheric and Oceanic Technology, 
15, 54–68.

Zhang, J., Howard, K., Langston, C., Vasiloff, S., Kaney, B., Arthur, A., et al. (2011). National Mosaic and Multi-Sensor QPE (NMQ) system: 
Description, results, and future plans. Bulletin of the American Meteorological Society, 92(10), 1321–1338. https://doi.org/10.1175/2011
BAMS-D-11-00047.1

YO ET AL.

10.1029/2020EA001340

13 of 13

https://doi.org/10.1175/1525-7541(2002)003%3c0166:AEMTFQ%3e2.0.CO;2
https://doi.org/10.1109/TGRS.2019.2948070
https://doi.org/10.1002/2016JD025783
http://ai.googleblog.com/2020/03/a-neural-weather-model-for-eight-hour.html
http://ai.googleblog.com/2020/03/a-neural-weather-model-for-eight-hour.html
https://doi.org/10.2151/jmsj.2019-031
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
https://doi.org/10.1175/1520-0469(1948)005%3c0165:TDORWS%3e2.0.CO;2
https://doi.org/10.1175/1520-0469(1948)005%3c0165:TDORWS%3e2.0.CO;2
https://doi.org/10.1175/BAMS-D-18-0195.1
https://doi.org/10.2151/jmsj.2020-008
https://doi.org/10.2151/jmsj.2020-008
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.2151/jmsj.2012-510
https://doi.org/10.1007/s11069-005-4667-7
https://doi.org/10.1175/JHM-D-11-064.1
https://doi.org/10.1175/2011BAMS-D-11-00047.1
https://doi.org/10.1175/2011BAMS-D-11-00047.1

	A Deep Learning Approach to Radar-Based QPE
	Abstract
	Plain Language Summary
	1. Introduction
	2. Methods and Data
	2.1. Data
	2.2. The VTP Framework
	2.3. Evaluation Methods

	3. Results
	4. Concluding Remarks
	4.1. Sensitivity of the Implementation
	4.2. Extending the VTP Framework
	4.3. Summary

	Data Availability Statement
	References


