
1.  Introduction
Secondary eyewall formation (SEF) and concentric eyewall (CE) structure in tropical cyclones (TCs) lead 
to an increase in storm size. After the SEF, TCs often experience an eyewall replacement cycle (ERC). In an 
ERC, the primary inner eyewall gradually dissipates and the secondary outer eyewall contracts (e.g., Black 
& Willoughby, 1992; Houze et al., 2007, 2006; Sanabia et al., 2015; Sitkowski et al., 2011; Yang et al., 2013). 
Coincided with the ERC, the maximum wind speed and radius of maximum wind speed (RMW) in TCs 
rapidly change (e.g., Black & Willoughby, 1992). Because the observations of the inner-core wind field in 
TCs with CEs are limited, the dynamics of the ERC (particularly dissipation of the inner eyewall) remain 
an open question.
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Plain Language Summary  Intense tropical cyclones often have the concentric secondary 
eyewall outside the original (primary) eyewall enclosing the eye (i.e., concentric eyewalls; CEs). The 
primary eyewall tends to decay after the secondary eyewall formation (i.e., eyewall replacement cycle; 
ERC). Dynamics of rapid changes of intensity and structure in an ERC remain an open question. To 
clarify the dynamics of the inner eyewall decaying, a quantitative estimation of tangential winds is applied 
to Typhoon Trami (2018) with CEs. The estimation is based on tracking of cloud motions associated with 
the tangential winds, using 2.5-min images in the Himawari-8 satellite. A high tangential wind of 50 m 
s−1 is estimated in the inner edge of the inner eyewall in Trami during an active stage of the inner eyewall. 
During the decaying stage of the inner eyewall, the estimated tangential wind rapidly decreases to about 
20 m s−1 at a radius of 24 km. The satellite-based tangential winds are validated with dropsondes by an 
aircraft. Our results highlight that the tangential winds during the inner-eyewall decaying stage is mainly 
decelerated due to eddies superposed on annular cyclonic circulations in the inner eyewall. The process 
can be best illustrated on an absolute momentum coordinate.
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Previous studies proposed several mechanisms of the inner eyewall dissipation in the ERC. Rozoff 
et al. (2008) proposed that upper-level warming around the inner eyewall associated with enhancement of 
the outer eyewall convection can induce suppression of the inner eyewall convection. Houze et al. (2006) 
and Tsujino et al. (2017) proposed that cutting-off of inward transport of the low-level moisture in the out-
er eyewall can induce the inner eyewall dissipation. Zhou and Wang (2011) proposed suppression of the 
inner eyewall updrafts due to the reaching of cold air advection originated from the outer eyewall. Wang 
et al. (2018) indicated that the developing SEF starts to reduce the moisture transport to the inner eyewall, 
and the convection in the inner eyewall. These studies mainly focus on the boundary layer and thermody-
namic processes in the inner eyewall dissipation.

Based on idealized simulations with a non-divergent barotropic model, Kossin et al. (2000) proposed the 
collapse of the inner eyewall due to barotropic instability across moat (i.e., vorticity redistribution through 
asymmetric eddies). They also indicated that the barotropic instability is favorable for the CE structure 
with a narrow moat based on linear stability analysis for a core vortex (corresponding to the eye and inner 
eyewall) in a ring vortex (corresponding to the outer eyewall). They assume the pre-existing outer vortex 
ring (i.e., outer eyewall). Thus, this barotropic concept explains the inner-eyewall decaying after the SEF, in 
contrast to Wang et al. (2018). Yang et al. (2013) examined the statistical features of typhoons with the CE 
structure based on microwave satellite images from 1997 to 2011. They indicated that typhoons with short-
lived CEs had a narrow moat. The results suggest the inner eyewall dissipation for a short period due to the 
barotropic instability across the moat. Lai et al. (2019) performed an ERC simulation in Hurricane Wilma 
(2005) with a full physics model and discussed dynamics with a barotropic model. They indicated that an 
inner eyewall in the simulated Wilma had an elliptic shape after the SEF, which is a general agreement 
with aircraft observations of an ERC event in Hurricane Gilbert (1986; Black & Willoughby, 1992). The 
elliptic shape in the inner eyewall suggests the type-II instability across the moat in Kossin et al. (2000). Lai 
et al. (2021) indicated a significant contribution of the asymmetric eddies to the inner-eyewall decaying, 
based on an angular momentum budget with a full-physics simulation.

To clarify the inner-eyewall dissipation mechanism based on the asymmetric eddies, dynamical verification 
is required from observation of actual TCs with the CE structure. However, there is relatively few observa-
tions of inner-core wind fields in CEs due to having a CE structure over an open ocean. In 2015, the Japan 
Meteorological Agency (JMA) launched a new-generation geostationary satellite, Himawari-8. The satellite 
is operated to conduct areal observations following typhoons at a highly frequency of 2.5 min, which is 
called a target observation (Bessho et al., 2016). The high-frequency imaging provides information on the 
internal structures of typhoons that was not previously available. For example, Horinouchi et al.  (2020) 
found that the tips of the anvils associated with convective bursts frequently form finite amplitude gravity 
waves, or internal bores. The 2.5-min images also allow us to track cloud motion which represents wind ve-
locity around the cloud. Tsukada and Horinouchi (2020; TH20) developed a method to estimate tangential 
wind speed around the inner-core region of typhoons based on space-time spectrum analysis of high-fre-
quency image sequence. The estimation method can provide useful information to elucidate the dynamics 
of the inner eyewall dissipation during ERCs in a typhoon with the CE structure.

Typhoon Trami formed on September 20, 2018 and moved westward while rapidly developing (Figure 1a). 
The storm had an approximately annular single eyewall on September 24, 2018 (Figure 2a). Coincided with 
decreasing of the westward translation speed, Trami had reached the lifetime maximum intensity (mini-
mum central pressure of 915 hPa and 10-min maximum wind speed of 54 m s−1) as estimated by the Region-
al Specialized Meteorological Center (RSMC) Tokyo on September 25, 2018 (Figure 1b). After September 
25, 2018, the moving direction of the storm turned northward with a slow-moving speed of about 2–3 m 
s−1, and the storm intensity gradually weakened. The special aircraft campaign of the Tropical cyclones-Pa-
cific Asian Research Campaign for Improvement of Intensity estimations/forecasts (T-PARCII) project (Ito 
et al., 2018; Yamada et al., 2018) conducted dropsonde observations by penetrating into the eye at multiple 
times during the mature and decaying stages (i.e., September 25–28, 2018).

Based on an objective definition for the CE structure in Yang et al. (2013) with images of microwave satel-
lites, we determined the storm with CEs on September 25, 2018 (Figures 2b and 2c). Associated with the 
weakening of the storm intensity, the inner eyewall gradually decayed (Figure 2c). On September 26, 2018, 
the inner eyewall convection became more weakened in the microwave images (Figures 2d and 2e), but the 
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Figure 1.  (a) Track (cross markers) and (b) central pressure (black crosses) and maximum wind speed (red crosses) of 
Typhoon Trami (2018) based on the RSMC-Tokyo (JMA) best-track data. Circle markers denote track and intensity at 
0000 UTC every day. In panel (a), the estimated storm center with the 2.5-min interval from 0000 UTC September 25 to 
0600 UTC September 27, 2018 is shown by the red line in the sub-figure. In panel (b), blue arrows indicate the times of 
flights in the T-PARCII observation, the black solid line in horizon denotes the analysis period in the present study (i.e., 
from 0000 UTC September 25 to 0600 UTC September 27, 2018), and the blue solid line in horizon indicates a period 
with maintaining the CE structure, based on microwave images (Yang et al., 2013). JMA, Japan Meteorological Agency; 
RSMC, Regional Specialized Meteorological Center.
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Figure 2.  Brightness temperature (K) based on the 89-GHz band in microwave satellites around the target ERC period 
in Trami, provided by the Tropical Cyclone Pages in the Naval Research Laboratory (https://www.nrlmry.navy.mil/
TC.html). The storm had the CE structure in panels (b) and (c), based on an objective classification in Yang et al. (2013). 
The black arrows denote the wavenumber-2 moat structure. ERC, eyewall replacement cycle.
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estimated intensity was mostly maintained (Figure 1b). Of particular in-
terest is an asymmetric moat with a wavenumber-2 structure in the inner 
core as shown by black arrows in Figures 2d and 2e. On September 27, 
2018, the inner eyewall mostly dissipated (Figure 2f). The CE structure 
defined by the microwave images was maintained within 20 h, which is 
classified by the “ERC” type in Yang et al. (2013). The evolution of the 
CE structure was in general agreement with the observation of an ERC 
event in Hurricane Gilbert (Black & Willoughby, 1992). Vertical shear of 
horizontal wind around Trami with the CE structure had small values 
below 5 m s−1 (Figure 3). The weak shear suggests that the evolution of 
the CE structure in Trami can be controlled by internal dynamics rather 
than the effects of environmental shear (e.g., Kaplan & DeMaria, 2003; 
Tang & Emanuel, 2010) on the storm structure.

The purpose of the present study is to clarify the dynamics of the in-
ner eyewall dissipation in Trami during the ERC event, based on the 
tangential wind estimation with the 2.5-min target observation of the 
Himawari-8 satellite (TH20). Trami is the first case of the dropsonde ob-
servations in the inner-core region during an eyewall replacement period 
after 2015. The estimated winds are validated with dropsonde observa-
tions conducted in the T-PARCII project. A formulation of the azimuthal-
ly averaged vertical vorticity equation on the potential radius coordinate 
(Schubert & Alworth, 1987; Schubert & Hack, 1983) is used to isolate the 
asymmetric eddies because axisymmetric radial advection of the vorticity 
is not explicitly included in the equation. Based on the projection of the 
vorticity retrieved by the satellite-based tangential winds on the potential 
radius, roles of asymmetric processes in the inner eyewall dissipation are 
discussed.

2.  Data and Methods
2.1.  Tangential Wind Estimation From Satellite Images

Advanced Himawari Imager (AHI) installed in the Himawari-8 satellite covers 16 wavelengths from 0.47 
to 13.3 μm. Horizontal resolutions of visible and infrared bands are 1 km (500 m for 0.64 μm) and 2 km, 
respectively (Bessho et al., 2016). The target observation of AHI covers an area of about 1,000 × 1,000 km 
that follows a typhoon at a time interval of 2.5 min. We use the method proposed by TH20. The method 
utilizes space-time spectral analysis to obtain tangential wind speed as a function of TC radius. As in TH20, 
the Himawari-8 data over 1 h are sampled at a specified radius after applying the parallax correction as 
described below, and the two-dimensional Fast Fourier Transform is conducted along azimuth and time to 
obtain the space-time power spectrum. The spectrum is converted to a function of azimuthal phase velocity, 
and the tangential wind representative of the radius is estimated from it as a weighted average over a range. 
The method is the same as in TH20, except for applying an additional procedure before spectral computa-
tion as described in what follows.

We examine the continuous evolution of inner-core wind fields in Trami for September 25–27, 2018. Thus, 
images at an infrared wavelength of 10.4 μm (Band 13), which are available even in the night time, were 
used in the present study, instead of images at the visible wavelength of 0.64 μm (Band 03) in TH20.

In general, well-developed TCs have vertical shear of tangential winds associated with the warm-core struc-
ture in the upper troposphere. The fact indicates that cloud motions in lower levels are faster than those 
in upper levels. There are both lower and upper clouds at a certain radius in the inner core during inner 
eyewall dissipation in an ERC event. Figure 4 shows the evolution of clouds in the inner-core region during 
the inner eyewall dissipation of Trami captured by the Himawari-8 satellite. When the inner eyewall was 
still active on early September 25, 2018, the inner core had a clear eye with high brightness temperature (Tb), 
and the upper clouds originated from the inner eyewall convection expanded on the outside of the inner 
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Figure 3.  Vertical shear strength (line) and direction (arrows) of 
horizontal wind around Trami in the JRA55 data. The vertical shear 

(VWS200−850) is defined as         

1/22 2
200 850 200 850U U V V , where U 

and V are the area averages of zonal and meridional wind components 
from the storm center to about 400-km radius. The subscripts 200 and 
850 indicate the 200 and 850-hPa levels in the vertical. The length of the 
arrows is normalized at each time. JRA55, Japanese 55-year Reanalysis.
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eyewall (Figure 4a). As the inner eyewall was weakening, the upper clouds were partly disappearing in the 
outside of the eyewall (Figures 4b and 4c). On September 26 and 27, 2018, lower clouds with high Tb and 
their motions were captured in most areas of the inner core including the moat (Figures 4d–4h).

Parallax correction is conducted for the original infrared images. The cloud top height at each pixel with a 
certain value of Tb, which is required in the parallax correction, is derived from information on tempera-
ture and geopotential height at the storm center provided by the Japanese 55-year Reanalysis (Kobayashi 
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Figure 4.  (a)–(h) Parallax-corrected infrared (Band 13) images around the inner core of Trami in the target observation of the Himawari8 satellite. Colors 
denote brightness temperature (K). Black circles correspond to radii of 30–80 km (every 10 km) from the storm center.
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et al., 2015). After the projection of the parallax-corrected infrared images on the polar coordinate with 
respect to the TC center (i.e., the step 1 in the TH20 method), time sequences of the Tb at each radius are 
obtained. Determination of the TC center every 2.5 min was documented in Appendix A. The radial and 
azimuthal resolutions are 2 km and 2π/512 radian, respectively. The spectral analysis (i.e., the step 3 in 
the TH20 method) in the present study is conducted without any radial averages of the power spectra, in 
contrast to TH20.

We are interested in information on lower cloud motions associated with lower-level circulations. To isolate 
the information on the lower cloud motions, an additional procedure was introduced in the present study 
to mask upper cloud motions using Tb on the infrared images. In regions with Tb values below a threshold 
value (263 K in the present study, corresponding to a height of 8 km), the Tb values are substituted with the 
threshold. The sensitivity of the threshold to the estimated wind speed was examined in Appendix B. In 
regions with Tb values above the threshold, the Tb values are also substituted with the threshold if their azi-
muthal extent is smaller than a threshold (the azimuthal angle of 60° in the present study). Since the small 
regions appear in between upper clouds (i.e., breaks in the upper clouds), their motions are controlled by 
the upper clouds. An example of the small regions was exhibited in the northeast sector at a radius of 24 km 
on later of September 26, 2018 (Figure 5a), which is masked by the substituting procedure (Figure 5b). The 
threshold of 60° in the present study corresponds to an azimuthal distance of about 10 km at a radius of 
10 km, corresponding to a horizontal scale of typical convective clouds. We are interested in the tangential 
winds represented by cloud motions at small scales. Spectra at high wavenumbers (≥3) on the spectral space 
were covered in the binning procedure (i.e., kmin = 3 in the step 4 of the TH20 method). The upper cloud 
motions can be mostly removed by the additional procedure.

The satellite-based estimation was conducted every 30 min during an analysis period from 0000 UTC 25 to 
0600 UTC September 27, 2018. Tangential winds at a certain time were estimated using the infrared images 
for 30 min before and after the time, with permitting to temporally overlap every 30 min.

2.2.  T-PARCII Observation

Flights of T-PARCII were conducted from September 25 to 28, 2018. The Gulfstream-II aircraft operated by 
Diamond Air Service was used in the flights. In the T-PARCII observation, two GPS dropsonde receivers 
were installed in the aircraft as conducted in Typhoon Lan (2017; Ito et al., 2018; Yamada et al., 2018). The 
flights were operated around 0600 UTC each day. The aircraft succeeded to penetrate into the eye of Trami 
on multiple times during the active and decaying periods of the inner eyewall. Dropsondes from the aircraft 
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Figure 5.  Azimuth-time cross-sections of the brightness temperature (color; K) at a radius of 24 km (a) before and (b) after the filtering procedure in 
Section 2.1.
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observed horizontal wind, temperature, and moisture fields of the inner core during the ERC event (Fig-
ure 6). Temperatures in the dropsondes were used to get information on height corresponding to Tb in the 
Band 13. Tangential winds in the dropsondes were used to validate the tangential winds derived from the 
Himawari-8 satellite.

3.  Results
3.1.  Evolution of Estimated Tangential Wind

Figure 7 shows the evolution of tangential winds estimated by the TH20 method, vertical component of 
relative vorticity, and absolute angular momentum. The vorticity and angular momentum were derived 
from the estimated tangential winds. Tangential winds at radii smaller than 10 km are extrapolated by the 
estimated angular velocity at the radius of 10 km with assuming rigid-body rotation, since they are overes-
timated as is apparent from a comparison against azimuth-time sections of Tb. This is presumably because 
error in the storm-center determination induces positive bias in the estimated tangential wind near the 
center, as shown by TH20. Tangential winds are shown for smaller radii before 0000 UTC September 26, 
2018, but they might be too large at around 5 km.

On early September 25, 2018, the estimated tangential winds increased with radius, and the maximum val-
ue was 50 m s−1 at a radius of 30 km (Figure 7b). The estimation is scarce outside the 30-km radius by the 
upper-cloud mask because the active inner eyewall clouds covered far from the 30-km radius (Figure 7a). 
The continuous estimation with the infrared images indicated the detailed evolution of the tangential winds 
during the analysis period. The relative vorticity was approximately constant (∼4 × 10−3 s−1) within the 
inner eyewall (Figure 7c). The angular momentum had a large radial gradient within the inner eyewall on 
early of 25 September, compared with those after 0000 UTC September 26, 2018 (Figure 7d).

As the inner eyewall decayed from September 25 to 27, 2018, the estimated tangential winds within the 30-
km radius gradually decreased to below 20 m s−1 (Figure 7b). The relative vorticity within the inner eyewall 
also decreased below 2 × 10−3 s−1, which was comparable to the magnitude in the moat between the radii 
of 30 and 80 km (Figure 7c). The angular momentum decreased in the inner core (Figure 7d). In particular, 
the decrease in the angular momentum within the inner eyewall suggested cutting off inward transport of 
the angular momentum associated with low-level inflows. Evolutions of the estimated tangential wind, vor-
ticity, and angular momentum are in general agreement with previous observation and numerical studies 
(e.g., Abarca & Montgomery, 2013; Black & Willoughby, 1992; Wu et al., 2012).

The weakening of the tangential winds can be confirmed with the azimuth-time cross-sections of Tb as 
shown in Figure 8. Cyclonic rotation speed (38 m s−1) of filtered low-level clouds at a radius of 24 km on 
early of September 25, 2018 (before the inner eyewall dissipation) was much faster than that (18 m s−1) on 
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Figure 6.  Paths of dropsondes around the inner core on (a) September 25, (b) September 26, and (c) September 27, 2018 during the T-PARCII campaign. The 
path of each dropsonde is shown by different colors and types of markers. The background image in each panel shows a snapshot of the Himawari-8 satellite 
(Band 13) within each flight period in T-PARCII. Black circles denote radii of 25, 50, 75, 100, 150, and 200 km, respectively.
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September 26, 2018. The good correlation between the estimated tangential wind and low-level cloud mo-
tions indicates that the upper-cloud mask worked well. Note that azimuthally averaged cloud-top heights 
(corresponding to azimuthal averages of Tb) temporarily increased within the 30-km radius during the inner 
eyewall dissipation (Figure 7a). The increase in the cloud top within the 30-km radius can be mainly due 
to (1) dissipation of a stable layer on the top of the boundary layer in the eye coincided with the weakening 
of the warm core (described in Section 3.2), and (2) inward advection of remnants in the decaying inner 
eyewall. The first process can mainly occur near the storm center. The second process can mainly occur 
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Figure 7.  Radius-time cross-sections of (a) azimuthal averages of cloud-top height (color; km) and Tb (contours; K) over pixels used in the estimation, (b) 
satellite-based tangential winds (m s−1), (c) vertical component of relative vorticity (10−3 s−1), and (d) absolute angular momentum (106 m2 s−1). The values 
within r = 10 km were extrapolated, assuming the rigid-body rotation with the estimated angular velocity at the 10-km radius (corresponding to the vertical 
red-dashed lines) in panels (b), (c), and (d). Based on the microwave images during the CE period shown by the blue line in Figure 1b, the inner and outer 
eyewalls were approximately located at around 40–50 and 90 km as shown in panel (b), respectively.
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in the inner edge of the inner eyewall. As shown in the evolution of the cloud-top heights, the estimated 
tangential winds are not always located at the same altitude during the analysis period. To examine vertical 
variations of the estimated tangential winds, the estimated tangential winds are validated with dropsondes 
by the T-PARCII campaign in the next subsection.

3.2.  Validation With the T-PARCII Dropsondes

Dropsondes from the T-PARCII aircraft directly observed wind and thermodynamic fields around the in-
ner core in Trami during the analysis period. The tangential winds based on the Himawari-8 satellite are 
verified by wind profiles in the dropsondes. Figure 9 shows the wind and temperature profiles by the drop-
sondes during the ERC event. Each dropsonde profile was projected on radius-height coordinates with a 
bilinear interpolation in Figure 9. It is not azimuthal average. However, the projection is useful for seeing 
the dynamic and thermodynamic structure in the storm inner core. On early September 25, 2018, Trami 
with the active inner eyewall had the RMW at about 40 km from the center, and the maximum tangential 
wind was 60 m s−1 (Figure 9c). The tangential winds by the dropsondes did not capture the second peak cor-
responding to the outer eyewall around a radius of 100 km. It might be due to relatively fewer dropsondes 
around the radius (Figure 9a). Synthetic aperture radar observation retrieved the second maximum of wind 
speed corresponding to the outer eyewall of Trami (not shown). The temperature field in the dropsondes 
exhibited a clear warm-core structure within a 30-km radius, which was enclosed by the active inner eye-
wall (Figure 9b). The tangential wind maximum at a radius of 40 km on September 25, 2018 (Figure 9c) was 
located in the inner eyewall. Thus, it was unavailable to estimate the tangential wind maximum with the 
TH20 method because of the mask by upper clouds in the eyewall. We caution that the weak shear of the 
tangential winds in Figure 9c may be due to the sparse of dropsondes which cannot resolve the structure of 
the tangential wind near the inner eyewall. Actually, the temperature gradient in Figure 9b is large from 1 
to 6 km at around 30 km radius.

On September 26 and 27, 2018 (during the inner eyewall dissipation), the RMW moved to the location of the 
outer eyewall around a radius of 100 km (Figures 9f and 9i). The warm core within the 30-km radius most-
ly disappeared (Figures 9e and 9h). Although the equivalent barotropic structure in the tangential wind 
was still maintained below a height of 5 km on September 26, 2018 (Figure 9f). The inner-core tangential 
winds had a slight vertical shear (i.e., weak baroclinic structure) in the troposphere on September 27, 2018 
(Figure 9i).

TSUJINO ET AL.

10.1029/2020JD034434

10 of 21

Figure 8.  Azimuth-time cross-sections of the brightness temperature (color; K) at a radius of 24 km during (a) maintaining period (0600 UTC to 0700 UTC 
September 25, 2018) and (b) decaying period (0600 UTC to 0700 UTC September 26, 2018) of the inner eyewall. Red dotted lines denote the estimated tangential 
wind speeds of (a) 38 and (b) 18 m s−1.
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From the dropsonde temperature field, the threshold of Tb (263 K) used in the filtering procedure of the 
present study corresponds to a height of about 8 km. It indicates that the estimated tangential winds in 
the TH20 method can correspond to tangential winds below the 8-km height. The present approach based 
on cloud motions in a range of the Tb is difficult to represent the vertical distribution of the tangential 
winds. Since the vertical shear observed by dropsondes was weak, we expect that the satellite-estimated 
tangential winds are close to their vertical average below 8 km. Our comparison suggested that it was not a 
bad assumption. To directly compare the satellite-based tangential winds, dropsonde tangential winds (VD-

8km) averaged vertically over the altitude where temperature is greater than 263 K are shown in Figure 10. 
In the comparison, we also calculated dropsonde tangential winds (VD) vertically averaged over a layer 
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Figure 9.  (left) Paths of the T-PARCII dropsondes around the inner core, (middle) observed air temperature (K), and (right) storm-relative tangential wind 
speed (m s−1). Colors and types of the markers in panels (a), (d), and (g) correspond to the colors and types in Figures 6a–6c, respectively.
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Figure 10.  Comparison of the satellite-based and dropsonde tangential winds. The black lines show the satellite-based tangential winds averaged over (a) 
0430 to 0530 UTC September 25, (b) 0530 to 0800 UTC September 26, and (c) 0400 to 0530 UTC September 27, 2018, during which the aircraft observations 
were conducted. The crosses show the dropsonde tangential winds averaged vertically where temperature is greater than Tb = 263 K, corresponding to the 
vertical average below ∼8 km (VD8km); the stars are the same but for temperature between 293 and 288 K, corresponding to the vertical averages between ∼1 and 
∼2 km (VD2km). The bullets show the tangential winds averaged over the bottom and top heights corresponding to the maximum and minimum Tb used in the 
tangential-wind estimation at the radii (VD). Colors of these markers are set equal to those in the corresponding panels in Figure 9. As in Figure 7b, the satellite-
based tangential winds within the 10-km radius were extrapolated, assuming the rigid-body rotation with the angular velocity at the 10-km radius, which was 
denoted by the black-dashed lines.
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corresponding to the maximum and minimum Tb values used in the satellite estimation. The satellite-based 
tangential winds at radii in the dropsondes were in agreement with the VD8km and VD within a range of about 
5 m s−1. As with the satellite-based tangential winds, VD8km increased with radius. Note that VD8km and VD 
are in a certain azimuthal section, different from the estimation in the TH20 method. On September 26, 
2018, two sondes were dropped near a radius of 15 km (Figure 10b). The difference of the VD8km is within 
5 m s−1, which partly represents the azimuthal anomaly of the tangential wind. It is much smaller than 
azimuthally averaged tangential winds at the radius.

We are also interested in the relationship of the tangential winds between the satellite estimation and the 
boundary-layer top. The vertically averaged dropsonde tangential winds (VD2km) over temperature levels 
of 293–288 K (corresponding to heights of 1–2 km) are shown in Figure 10. The VD2km is quite similar to 
the VD8km, except for dropsondes on September 26, 2018 and at a radius of 60 km on September 27, 2018. 
Corresponding to the increase in the cloud-top height on early September 26, 2018 (Figure 7a), the VD2km 
is always higher than the VD. However, the difference between the VD8km and VD2km is within 5 m s−1. The 
radial variation of the VD2km followed that of the VD8km. On September 27, 2018, the VD8km in the inner edge 
of the outer eyewall is weaker than the VD2km, which corresponds to the slight increase in the vertical shear 
of the tangential winds in the storm inner core (Figure 9i). However, the VD2km at the 60-km radius on 27 
September is weaker than that at a radius of 50 km on September 26, 2018. The above facts indicated that 
the decrease of the satellite-based tangential winds reasonably followed the decrease in the VD2km during 
the ERC period.

4.  Discussion
Here, we discuss possible roles of asymmetric processes in the inner eyewall dissipation. Although our 
analysis does not derive axially asymmetric wind distributions from the infrared images, we can discuss 
their roles indirectly from the time evolution of the radial distribution of tangential winds. The vorticity is 
projected onto the potential radius (R) coordinate, where R is defined by the absolute angular momentum 
(M) and Coriolis parameter (f) as M = fR2/2 (Schubert & Hack, 1983).

The azimuthal-mean tendency equation of absolute vertical vorticity (      /rv r r f ) on annular co-
ordinates (r, z) is as follows:

     
   

   


,D ru M w M

Dt r r z r r r r
� (1)

where the overbar indicates azimuthal average, and the material derivative is         D / D / / /t t u r w z
        D / D / / /t t u r w z. Time is defined as t on the coordinates. Radial (r), tangential, and vertical (z) components 

of wind velocity are u, v, and w, respectively. A symbol of M is azimuthal-mean angular momentum 
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where the prime means asymmetric components, and F is external forcing in tangential wind including 
surface friction.

According to Schubert and Alworth (1987), the projection of Equation 1 on the potential radius coordinates 

( ,R Z) is

 
  

                   


2 0

0
,RR w

R R Z
� (3)

TSUJINO ET AL.

10.1029/2020JD034434

13 of 21



Journal of Geophysical Research: Atmospheres

where time and height are defined as τ and Z on the potential radius co-
ordinates, respectively, ρ0 is a reference air density proportional to e−Z/H 
(H is a constant scale height of 8 km). In the first term within the bracket 
of the right-hand side,


 .MRR
f

� (4)

Vorticity advection associated with u  is not explicitly included in Equa-
tion  3 because a certain R is identical to a constant- M surface. This 
feature is an advantage in discussing the roles of asymmetric processes 
indirectly from the axisymmetric tangential wind information estimat-
ed by the TH20 method without having estimation of radial winds. Any 
asymmetric contribution to the vorticity tendency is included in the first 
term on the right-hand side of Equation 3. If the vortex is barotropic (i.e., 
  and R are constant for given r), the density-weighted vertical average of 
Equation 3 between Z = 0 and Zt gives
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where the bracket represents the vertical average for an arbitrary variable 
of q:      0 00 0/Z Zt tq qdZ dZ, and   0w Z  is set to zero.

Figure 11 shows the projection of the satellite-derived vertical vorticity in 
Trami (Figure 7c) on the potential radius coordinate. Note that the pro-

jection is radially zooming in Figure 7c (red contours in Figure 11), depending on the strength of tangential 
wind speed. Around 0000 UTC September 26, 2018, the vorticity in potential radii of 80–130 km rapidly 
decreased from 4.0 to 2.0 × 10−3 s−1. The duration of the decrease was about 6–12 h. The rapid decrease in 
the vorticity is associated with the inner eyewall dissipation during the ERC event.

External forcing  F  for tangential wind can be parameterized with the surface friction stress  D sC v v , where 
CD is the surface exchange coefficient for momentum, v

s
 is the tangential wind speed at the surface, and H 

is the depth of the air column. In the present study, CD = 1.0–2.0 (×10−3) (Powell et al., 2003),  0.78sv v  
(Kuo et al., 2016). Using the first term on the rhs of Equation 5, the contribution of the surface friction to 
the vorticity tendency is expressed as:

 
 
 


 

  1

3 .
2 1

D sC v

H e� (6)

A rigid-body rotation was assumed in the above equation. If  30v  m s−1, the e-folding time for the surface 
friction is 20–40 h. The duration is much longer than that (6–12 h) of the observed decrease in the vorticity 
at the potential radii of 80–130 km.

According to the dropsonde observation, tangential wind (or vorticity) in Trami can be assumed as 
equivalent barotropic structure over the column within a height of 8 km during the inner eyewall dissi-
pation (Figure 9). Thus, the contribution of vertical advection to the tendency in Equation 5 is approx-
imated as:

  
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Figure 11.  Evolution of the satellite-based relative vorticity (color; 10−3 
s−1) around the storm projected on the potential radius (R) coordinate. 
Note that the vorticity profile on the R is a view to zoom the vorticity 
profile around the storm eye on the physical radius (red and cyan contours; 
km). As in Figure 7c, the values within the physical radius of 10 km 
(corresponding to the red contour) were extrapolated, assuming the rigid-
body rotation with the angular velocity at the 10-km radius.
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The term can contribute to the development of the storm vorticity in updraft regions. Also, the contribution 
of the term to the decrease in the storm vorticity is given in areas with significant axisymmetric subsidences, 
which leads to adiabatic warming in the areas. If   0.1 to 0.2w  m s−1, for example, the e-folding time for 
the vertical advection is 20–40 h, which is comparable to that for the surface friction. This is a typical value 
of the eye subsidence in some numerical simulations of mature TCs under idealized situations (e.g., Ohno 
& Satoh, 2015; Stern & Zhang, 2013). The eye subsidence during the inner-eyewall dissipation period in 
the present study can be much weaker than that in the mature TC cases. According to the dropsondes, the 
observed warm core within a radius of 30 km decayed during a period of September 25–26, 2018. The dissi-
pation of the warm anomaly suggests that there were fewer areas with  0w  even in the storm eye around 
0000 UTC September 26, 2018. Therefore, it is unlikely that the subsidence provided a major contribution 
to the vortex slowdown.

According to the above analysis, the axisymmetric processes in the surface friction and vertical advection 
are minor contributions to the observed decrease in the vorticity at the 80 to 130-km radii. These facts sug-

gest that the decrease was mainly caused by the remaining factor, which is attributed to the second and the 

third terms of the rhs of Equation 2, that is,           / /u M r w M z . Since their density-weighted ver-

tical average is equal to               / / | /f ru M R R w M H e
Z H

1 , the first term is the horizontal 

convergence of the angular momentum flux by asymmetric processes.

Contrary to the fast slowdown over the 80 to 130-km potential radii, the vorticity within a potential radius 
of 80 km decreased much slowly with an e-folding time of ∼36 h. As mentioned above, this e-folding time 
can be explained solely by the surface friction. Because of the radial contrast in the vortex slow-down 
rate, the radial distribution of vorticity is altered from being nearly uniform in early September 25, 2018 
over r < 30 km to be centralized to r < 10 km after September 26, 2018. This behavior resembles to a time 
evolution of barotropic vortices mimicking TCs with CEs; when a core vortex is surrounded by a ring of 
secondary vorticity peak, the vortices can interact with each other by barotropic instability to result in 
their erosion (see Appendix C). This similarity indicates that the eddy angular momentum flux conver-
gence suggested by our analysis is likely initiated by the interaction between a region with high vorticity 
inside the inner eyewall and another along the outer eyewall, as suggested by the wavenumber-2 moat 
structure in the microwave images (Figure 2). In this case, the slowdown around the inner eyewall occurs 
through the mixing with the air mass in the moat. The large dilution of vorticity in the outer edge of the 
core vortex associated with asymmetric eddies has been also pointed out by a hurricane simulation in 
Lai et al. (2019). As with Lai et al. (2021, 2019), in order to quantitatively assess this interpretation, we 
would need numerical simulations with three-dimensional models with full-physics with an adequate 
initialization to reproduce the actual TC structure because the barotropic model in Appendix C does not 
have processes in surface friction and convection, unlike the observational results. This task is left for 
future works.

After 0600 UTC 26 September, the entire inner core region is slowed down gradually at an e-folding time 
much longer than 24 h (Figure 11). This process can be explained by surface friction. In other words, vor-
ticity changes in this region/time do not require eddy angular momentum transport. In the stage, there is 
less supply of the angular momentum to the eye rotation associated with the inner-eyewall updrafts and 
boundary-layer inflow. Montgomery et  al.  (2001) examined spin-down processes for the axisymmetric 
hurricane-like vortices with bottom friction under a dry situation (i.e., no diabatic heating in the eyewall), 
and indicated that the time scale for the spin down is mostly predicted by Ekman-layer spin-down pro-
cesses based on Eliassen (1971). The vorticity changes in the present study are similar to axisymmetric 
spin-down of hurricane-like vortices due to surface friction under idealized situations by Montgomery 
et al. (2001).

As mentioned in Section 3.2, note that the sparse dropsondes may not precisely resolve vertical shear of tan-
gential winds in the eye (r < 30 km) on September 25, 2018 (Figure 9c). We discuss impacts of the unresolv-
able vertical shear of the tangential winds to the examination on the potential radius. If the unresolvable 
vertical shear can largely contribute to deceleration in the tangential winds, the slowdown of the rotation 
near the center (where the surface friction is dominated) will be faster than the e-folding time (20–40 h) for 
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the surface friction during a period of ∼0600 UTC September 25 to 0600 UTC September 26, 2018. However, 
the actual slowdown of the rotation near the center can be mostly explained by the surface friction. Thus, 
we consider that the impact of the unresolvable vertical shear can be minor for the examination on the 
potential radius in the eye.

5.  Summary and Conclusions
CEs in TCs increase the storm size and precipitation area associated with TCs. An ERC after the SEF drasti-
cally changes the inner-core structure of the storm. Previous studies based on theory, statistic, and full-phys-
ics modeling approaches have proposed roles of asymmetric processes, which is associated with barotropic 
instability across the moat, on the inner eyewall dissipation during the ERC event (e.g., Kossin et al., 2000; 
Lai et al., 2019; Yang et al., 2013). Based on images captured by the Himawari-8 satellite with 2.5-min in-
terval, a method to quantitatively estimate tangential winds in the inner core of TCs proposed by TH20 was 
used to examine the contribution of the asymmetric processes to the inner eyewall dissipation in a typhoon 
with the CE structure.

The target typhoon in the present study is Trami in 2018. Trami exhibited a CE structure after the SEF 
around 0000 UTC September 25, 2018. Then, Trami experienced an ERC event during a period of later of 25 
to early of September 27, 2018. The inner eyewall gradually decayed in the period. To estimate the continu-
ous evolution of tangential winds at lower levels in Trami for about 2 days, the method used in the present 
study was slightly changed from the original method in TH20. The change includes an additional procedure 
to mask upper cloud motions using images at an infrared wavelength of 10.4 μm (Band 13).

The estimated tangential winds increased with radius in the inner core. The maximum value was 50 m s−1 at 
a 30-km radius with an active inner eyewall around 0000 UTC September 25, 2018 (Figure 7b). As the inner 
eyewall was decaying from September 25 to 27, 2018, the estimated tangential wind decreased to 20 m s−1 at 
the radius. Coincided with the decrease in the tangential winds, the satellite-derived vertical vorticity also 
decreased from ∼4 × 10−3 s−1 to 2 × 10−3 s−1 within the inner eyewall during the inner eyewall dissipation 
(Figure 7c). Moreover, the estimated tangential winds were validated with tangential winds observed by 
dropsondes during penetration flights into the eye in the Tropical cyclones-Pacific Asian Research Cam-
paign for Improvement of Intensity estimations/forecasts (T-PARCII) project. The satellite-based tangential 
winds were close to the dropsonde-derived tangential winds at several radii. The evolution of the tangential 
winds based on the dropsondes was also consistent with the satellite-based tangential winds during the 
inner eyewall dissipation.

Projection of the satellite-derived vorticity on the potential radius coordinates is used to discuss the roles 
of asymmetric processes on the inner eyewall dissipation. According to scale analysis and observations, 
we find that the surface friction provides the dominant contribution among axisymmetric processes to the 
slow-down rotation in the inner core. However, a slow-down rotation (e-folding time of 6–12 h) at around 
the potential radii of 80–130 km (corresponding to the physical radii of 10–30 km) is faster than the e-fold-
ing time (20–40 h) for the surface friction during the inner eyewall dissipation (0600 UTC September 25 
to 0600 UTC September 26, 2018). It suggests that the slow-down rotation was mainly explained by asym-
metric processes. On the other hand, a slow-down rotation (e-folding time of ∼36 h) near the storm center 
within the 80-km potential radius was mostly comparable to the e-folding time for the surface friction. It 
indicates that the slow-down near the center can be explained by the surface friction. After 0600 UTC Sep-
tember 26, the entire inner core is slowed down gradually at an e-folding time much longer than 24 h. The 
inner-core vorticity changes in the period are mostly explained by the axisymmetric spin-down due to the 
surface friction (Montgomery et al., 2001).

The results lead to the following conclusions for the evolution of the inner-core tangential winds and 
vorticity during the inner eyewall dissipation of Trami. First, the slow-down rotation in the inner eye-
wall and an outer part of the eye (at around 10–30 km radii) can be associated with angular momen-
tum transport due to asymmetric eddies, which is in general agreement with previous studies (e.g., 
Lai et al., 2019; Yang et al., 2013). Particularly, the slow-down rotation has been also pointed out as a 
large dilution of vorticity in the outer edge of the eye and inner eyewall in a hurricane simulation (Lai 
et al., 2019). The asymmetric slowdown lasts for about 1 day after the SEF. The present study is the first 
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examination on the dynamical roles of the asymmetric processes in the inner-eyewall dissipation using 
the satellite-based tangential wind estimation. Second, the slow-down rotation near the storm center 
can be mainly due to surface friction. After the asymmetric slowdown lasting until 0600 UTC September 
26, 2018, the rotation in the outer part of the eye and inner eyewall can be decelerated by the axisym-
metric surface friction.

Images captured by the target observation with a 2.5-min in the Himawari-8 satellite and the method 
to estimate tangential winds by TH20 allow us to examine the detailed evolution of inner-core wind 
fields in TCs with CE structure. A combination of the tangential wind estimation with several theories 
can discuss dynamics and potential roles of asymmetric processes on the inner eyewall dissipation. The 
present approach is helpful for fully understanding mechanisms of the intensity and structural chang-
es in ERCs. The present study focused on one case. On the other hand, the target observation in the 
Himawari-8 satellite, which has been launched in 2015, captured many more cases with the CE structure 
in the present. In future works, we will examine more cases using the present approach. Besides, the 
present approach with the potential radius coordinates will be applied to realistic ERC simulations with 
full-physics models.

Currently, it is difficult to capture the inner-core tangential winds of typhoons in the western North Pacific 
since operational reconnaissance by the U.S. ceased in 1987. We consider that our results provide profiles 
of inner-core tangential winds with high spatiotemporal resolution (2 km in radius and 1 h in time). In-
ner-core wind observations by aircraft dropsondes and airborne Doppler radars can be largely contributed 
to improvement of the storm intensity prediction through data assimilation procedures in the Atlantic hur-
ricanes (e.g., Feng & Wang, 2019; Pu et al., 2016). Thus, the inner-core winds based on the satellite images 
in the present study may be contributed to improvement of intensity prediction of typhoons through any 
data assimilation procedures.

Appendix A:  Determination of the storm center
The storm center during 0000–1500 UTC 25 September 2018 was determined by the method of Braun (2002), 
which calculates the azimuthal variance of Tb between 2 and 50 km at each pixel within a radius of 65 km 
from the best-track position and searches for the point of minimum variance every 2.5 min. Originally, the 
method was proposed to determine the axisymmetric center from the pressure field in the cloud-resolving 
simulation data. The method is also effective for the determination of the storm center from satellite infra-
red images in cases of an annular eyewall. On the other hand, the method is difficult to determine the storm 
center from the satellite images in cases of highly asymmetric structure. Thus, the storm center after 1500 
UTC September 25, 2018 (i.e., the inner eyewall dissipation period) was subjectively determined by the sat-
ellite images every 30 min. The storm center every 2.5 min was determined by the cubic spline interpolation 
with the subjectively determined storm center every 30 min.

Appendix B:  Sensitivity of the threshold in the upper-cloud mask
In the present study, a procedure to remove upper cloud motions in the Himawari-8 images was introduced 
in the TH20 method. A threshold of Tb (263 K) was used to remove the upper clouds. To examine the sensi-
tivity of choice of the threshold to the estimated tangential winds, we estimated the satellite-based tangen-
tial winds with different thresholds of 268 and 273 K corresponding to heights of 7 and 6 km, respectively 
(Figure B1). There was no large difference over most areas in the eye until 0000 UTC September 26, 2018. 
After 0000 UTC September 26, 2018, both the estimated tangential winds with 268 and 273 K were slightly 
faster (∼1–5 m s−1) than those with 263 K over narrow radii within a radius of 30 km (i.e., the inner edge of 
the inner eyewall). The faster tangential winds might be induced by strong vertical shear of tangential wind. 
Although the relative difference of the tangential winds is about 5%–20%, the difference can be minor for 
the discussion in the present study.
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The estimated tangential winds with 263 K had difference (−2.5–2.5 m s−1) from the estimated tangential 
winds with 268  K (and 273  K) in the outside of the 30-km radius during the inner eyewall dissipation 
and near the storm center after 1200 UTC September 26, 2018. On the other hand, it seems that there was 
randomly the difference in contrast to the coherent bias exhibited in the inner edge of the inner eyewall. 
Moreover, higher values in selecting the threshold decrease areas for the estimation. For example, in the 
threshold of 273 K, the tangential winds were not estimated over most areas in the inner core after 0000 
UTC September 26, 2018. Thus, the choice of the threshold in the additional procedure is appropriate for 
the discussion.

Appendix C:  An idealized numerical experiment with a barotropic model
On the basis of an idealized numerical experiment, we demonstrated the large dilution of vorticity in 
the outer edge of the eye and inner eyewall in a TC, as pointed out by Lai et al. (2019). A non-divergent 
barotropic spectral model used in the present study is based on the formulation and procedures in Kossin 
et al. (2000). The model domain is a square area of 1,000 × 1,000 km with double periodic boundaries. The 
model grid points of 1024 × 1024 are uniformly located on physical space. The model is run with a dealiased 
calculation of the nonlinear terms in Equation 6 of Kossin et al. (2000), resulting in resolved Fourier modes 
of 331 × 331. The time integration is accomplished with the standard fourth-order Runge-Kutta scheme. 
The time step is 7.5 s, and viscosity value in the diffusion term with the first order of Laplacian is 100 m2 s−1 
(corresponding to the e-folding time of about 40 min for the maximum wavenumber of 331).

Based on a formulation (Equation 11 in Kossin et al., 2000), the initial profile of vorticity in the vortex was 
given as vortex parameters of vorticities (ζ1, ζ2, ζ3, ζ4, ζ5) = (3.5, 0.01, 1.5, 0.1, −0.082) × 10−3 s−1, switching at 
the radii of (r1, r2, r3, r4) = (40, 60, 90, 150) km smoothly over the distances (d1, d2, d3, d4) = (2.5, 2.5, 2.5, 15) 
km, respectively, as shown in Figures C1a and C2b. The parameters were modeled by the satellite-based tan-
gential winds (Figure 7b), derived vorticity (Figure 7c), dropsonde-based tangential winds (Figure 9c), and 
a microwave image (Figure 2b). The inner vorticity peak inside 40 km mimics the observed one associated 
with the inner eyewall. The outer secondary peak over 60–90 km is not necessarily validated by the sparse 
dropsonde observation, so we rather supposed it from the presence of the moat and the observed develop-
ment of the wavenumber-2 feature. The initial vortex had two local peaks of the tangential wind at radii of 
40 and 90 km (Figure C1a). Initial perturbations embedded in the vortex ring (ζ3) were given by Equation 12 
in Kossin et al. (2000). The amplitude was 2.718 × 10−5 s−1.
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Figure B1.  Radius-time cross-sections of the difference of the tangential winds estimated by the threshold of 263 K from the tangential winds estimated by 
thresholds of (a) 268 K and (b) 273K.



Journal of Geophysical Research: Atmospheres

TSUJINO ET AL.

10.1029/2020JD034434

19 of 21

Figure C1.  (a) Radial profiles of axisymmetric vorticity (red) and tangential wind speed (black) and horizontal 
distributions of the vertical component of relative vorticity (color; 10−3 s−1) at (b) initial time, and (c) 24 h in a TC-like 
vortex simulated by a non-divergent barotropic model. The storm had a core vortex (corresponding to the eye and inner 
eyewall) and a vortex ring (corresponding to the outer eyewall). At the initial time, perturbations of vorticity were 
embedded in the vortex ring.
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The core vortex quickly evolved to have an elliptical shape due to interaction with the vortex ring at 2 h 
(not shown). The elliptic core vortex and inward permeation of vorticity in the vortex ring indicate asym-
metric eddy mixing of vorticity associated with barotropic instability across a low vorticity area between 
the core and ring vortices (corresponding to the moat), which is identical to the type-II instability in Kossin 
et al. (2000). The large dilution (and decrease) of vorticity in the outer edge of the eye and inner eyewall 
(∼potential radii of 270–320 km) occurred during a period of 2–8 h, and the radial profile of the vortic-
ity had a periodic oscillation after 8 h (not shown), in contrast to the observation. After 24 h, the vortex 
reached the quasi-steady state maintaining the low vorticity area of the wavenumber-2 structure in the 
moat (Figure C1c). The wavenumber-2 moat was similar to the microwave images during the inner eyewall 
dissipation of Trami (Figures 2d and 2e). The inner peak of the tangential wind in the initial vortex totally 
disappeared at 24 h (the black dash-dotted line in Figure C1a). Coincided with the dissipation of the inner 
peak, the high vorticity at radii of 20–40 km was decreased due to an asymmetric transport with the baro-
tropic instability (the red dash-dotted line in Figure C1a). The decrease in the high vorticity occurs in the 
radii of the outer edge of the eye and inner eyewall. It corresponds to the large dilution of vorticity in the 
outer edge of the core vortex in the realistic hurricane simulation of Lai et al. (2019). The present barotropic 
model does not have a parameterized surface friction. Therefore, unlike the observational results presented 
in Section 4, the simulated core vortex is not decelerated near its center where the eddy angular momentum 
transport does not reach (here, r < 20 km).

Data Availability Statement
The Himawari-8 data are downloaded from the NICT Science Cloud (https://sc-nc-web.nict.go.jp/wsdb_os-
ndisk/shareDirDownload/03ZzRnKS). The typhoon best track data by the RSMC-Tokyo is available online 
(at https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/besttrack.html). The data derived in 
this study, the satellite-derived tangential winds of Trami, are available online (https://dx.doi.org/10.5281/
zenodo.3958835). The numerical model in the present study is available online (https://dx.doi.org/10.5281/
zenodo.3959297). Details of the T-PARCII are found online (http://www.rain.hyarc.nagoya-u.ac.jp/∼tsub-
oki/kibanS/index_kibanS_eng.html).
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