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Stability of cloud-topped boundary layers 
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SUMMARY 
According to the thermodynamic theory of cloud top evaporative instability, persistent stratocumulus 

should be observed only when the cloud top jumps in equivalent potential temperature 8. and total water 
mixing ratio r satisfy the stability condition AO, > k(L/c,)Ar,  where k 0.23. Using observations of persistent 
mid-latitude and subtropical stratocumulus we find that the above stability condition is violated in many cases. 
In an attempt to understand how stratocumulus can persist under apparently unstable conditions we first review 
the thermodynamic instability theory and then develop a dynamical framework using a two-dimensional 
Boussinesq moist convection model with spectral discretization and with resolution sufficient to simulate cloud 
top processes. Idealized initial value experiments confirm that, when the above condition is violated, evaporative 
instability leads to cloud breakup through sequential dissections of existing cloud. However, initial conditions 
close to the critical stability line (e.g. AOc, (L/cp)Ar  = -6K, -15 K) lead to cloud breakup with acharacteristic 
cloud half-life of several hours, while physically realistic initial conditions far from the critical stability line 
(e.g. AOe, (L/c , )Ar  = -16K, -25K) lead to more rapid breakup, with a cloud half-life on the order of 
1/2 hour. When evaporative instability is so weak that the associated cloud half-life is as long as several hours, 
other physical processes (such as surface evaporation) can apparently moisten the boundary layer rapidly 
enough to mask the cloud breakup process. 

1. INTRODUCTION 

In a paper which has become a classic, Lilly (1968) constructed a simple model of 
the shallow, cloud-topped boundary layers which form under strong subsidence inversions 
associated with subtropical and mid-latitude high pressure systems. Using concepts similar 
to those developed by Squires (1958) for penetrative downdraughts in cumulus clouds, 
Lilly argued that one of the theoretical requirements for applicability of his model was 
the stability of cloud top against penetration by dry upper air masses. According to this 
argument, cloud top instability could be understood as follows: “If a parcel of the upper 
air is introduced into the cloud layer and mixed by turbulence, evaporation of cloud 
droplets into the dry parcel will reduce its temperature. If the mixed parcel reaches 
saturation at a lower temperature than that of the cloud top it will be negatively buoyant 
and can then penetrate freely into the cloud mass. In such a case the evaporation and 
penetration process will occur spontaneously and increase unstably until the cloud is 
evaporated. ” Since the condition for no change in temperature upon evaporative mixing 
(while maintaining saturation) is that the equivalent potential temperatures of the wet 
and dry layers be equal, Lilly concluded that for stability of a cloud layer the temperature 
inversion must be strong enough that the equivalent potential temperature remains 
constant or increases upwards at cloud top. Defining the jump operator A as the above- 
cloud value minus the in-cloud value, this condition for stability can be written 

AOe > 0. 

Near the end of his paper Lilly presented three radiosonde soundings taken in August 
1962 at Oakland, California during stratus overcast conditions. The soundings showed 
that the warm, dry air above the inversion had an equivalent potential temperature about 
5 to 9 K higher than the cool, moist boundary layer air. Lilly concluded that the prediction 
of a positive AOe “seems to agree with the observational data”. 
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Although the mixed layer model equation set proposed by Lilly took into account 
the effects of water vapour and liquid water on buoyancy, his cloud top stability analysis 
did not. Randall (1980) arid Deardorff (1980a) included these additional buoyancy effects 
and proposed what they considered to be the more accurate stability condition 

AOe > k(L /c , )Ar  (2) 
where Ar is the cloud top jump in total (vapour plus liquid) water mixing ratio and k is 
a dimensionless parameter which has the typical value k = 0.23. In section 2 we shall 
give a derivation of Eq. (2). For now we simply note that, under typical stratocumulus 
conditions, Ar < 0 so that the stability criterion (2) is not as strict as (1) in the sense that 
it predicts cloud top stability even when AOe is slightly negative. 

The stability criterion (2) divides the (Ace, Ar)  plane as shown in Fig. 1. If (2) is a 
sharp stability condition, we might expect that all soundings taken in persistent strato- 
cumulus conditions would have associated (AOc, Ar)  values which lie to the right of the 
critical line. Indeed, the three Oakland soundings analysed by Lilly do lie far to the right 
of this line. We might also expect that soundings taken near the boundary between the 
stratocumulus regime and the trade cumulus regime would be characterized by points 
close to or just to the left of the stability line. One might imagine boundary layer air 
flowing equatorward around the east side of the subtropical high pressure cell over 
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Figure 1. The (Afle, A r )  plane, with the critical thermodynamic instability curve (AOc = k(L/c, , )Ar) .  Obscr- 
vational data are indicated by the coded symbols, with open symbols for mid-latitude cases, solid symbols for 
subtropical cases and ‘cumulus symbols’ for trade cumulus cases. Two thirds of the stratocumulus observations 
lie to the left of the critical curve and hencc are at odds with the predictions of the thermodynamic theory of 

cloud top entrainment instability. 
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increasingly warmer water, with boundary layer values of 8, increasing faster than above- 
cloud values, so that soundings eventually cross from the stable to the unstable side of 
the critical stability line and cloud patterns change from stratocumulus to trade cumulus. 

It was perhaps with the above expectations in mind that many have witnessed with 
some surprise an increasing number of observations of apparently persistent strato- 
cumulus conditions with associated (AH,, Ar)  values which violate the stability con- 
dition (2). This set of stratocumulus observations, which has accumulated over the last 
ten years, can be divided into two subsets: aircraft, tethered balloon and shipboard 
sounding data taken in mid-latitude stratocumulus over England and over the surrounding 
waters of the North Atlantic and the North Sea; and aircraft and tethered balloon data 
taken along and off the California coast in the subtropical marine stratocumulus regime 
of summer and fall. This data base is described in the nine papers summarized in the top 
two sections of Table 1. We have examined this data set with the objective of documenting 

TABLE 1. A BRIEF SUMMARY OF THE DATA USED IN FIG 1 

Reference Location Date Comments 

Mid-latitude 
.rtratocumulus 

Slingo et al. (1982a) Near 60"N 10"W 

Taylor et al. (1983) Ship triangle centred 
at 59"N 12"W 

Nicholls and Leighton (1986) U.K. coastal waters, 
primarily North Sea 

Slingo el ul. (1982b) Cardington, U.K. 

Subtropical 
strutocumulus 

Albrecht et al.  (1985) Near 35"N 125"W 

Hanson (1984) Near 29"N 122"W 

Rogers and Telford (1986) About l00km west 
of San Francisco 

Weaver (1987) About 500 km south- 
west of San Diego 

Gerber (1986) San Nicolas Island, 
California 

Trade cumulus 
Betts and Albrecht (1987) Near 15"N 56"W 

Near 11"N 38"W 

Between Hawaii and 
the equator 

8 August 1978 

31 August 1978 

27 April, 22 and 
29 July 1982, 
15 December 1982, the surface 
2, 16 November 1983 

26-27 October 1977, Tethered balloon flights into 
15 January 1978 nocturnal stratocumulus 

Three aircraft during JASIN 

Radiosondes at 1 to 2 hour 
intervals during J ASIN 

MRF C-130 flights, some 
into layers decoupled from 

5 ,  13, 17 June 1976 

27 June 1981 

25 August 1982 

Three NCAR Electra flights 
from NASA Ames 

NOAA WP-3D flights 
from San Diego 

Seven of eight NCAR Queen 
Air soundings showed AOe < 0. 
Soundings S7 and S9 are shown 
in Fig. 1. 

30 July to Ten NCAR Electra flights 
21 August 1985 from San Diego 

18-29 October 1984 Naval Research Laboratory 
tethered balloon flights into 
stratocumulus overcast 
(flights 12, 17, 18) 

22-26 June 1969 Radiosondes at 1.5-hour 
intervals during BOMEX 

7-12 February 1969 Radiosondes at 3-hour 
intervals during ATEX 

15 January to Dropwindsondes during 
20 Feburary 1979 FGGE 
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the (he,, AT) values of soundings through persistent stratocumulus decks. In addition 
we have made use of trade cumulus data from shipboard soundings in the Atlantic during 
BOMEX (Holland and Rasmusson 1973) and ATEX (Augstein et al. 1973), and from 
FGGE dropwindsonde data south of Hawaii, all of which have been analysed by Betts 
and Albrecht (1987). For the trade cumulus cases we have defined the A operator as the 
above-trade-inversion value minus the subcloud layer value, which would be equivalent 
to a jump across the trade inversion if the convective layer (cloud layer plus subcloud 
layer) were uniformly mixed. The results of this survey of stratocumulus and trade 
cumulus data are given by the fifty-six coded symbols shown in Fig. 1 ,  with the eight 
'cumulus symbols' near the lower left denoting the trade cumulus data from Betts and 
Albrecht, the closed symbols denoting the subtropical stratocumulus cases and the 
remaining open symbols the mid-latitude stratocumulus cases. Two interesting aspects 
of this diagram are the approximate arrangement of the points along a he, = 9 K line 
(where A@ = AOe - (L/cp)Ar)  and the fact that two thirds (thirty-two out of forty-eight) 
of the stratocumulus cases violate condition (2). The worst offenders are the subtropical 
cases, especially those taken by the NCAR Electra south-west of San Diego during July 
and August 1985 (Weaver 1987). As examples consider the points for which 
(AOe, Ar) = (-11 K, -7.5g kg-') and (-12K, -8gkg-'). The 19, profiles for these cases 
(1757 and 2 2 3 3 ~ ~ ~  9 August 1985, respectively) are shown in Fig. 2. High resolution 
GOES images at 1803 and 2 3 3 3 ~ ~ ~  from the CSU ground station are shown in Fig. 3, 
confirming the persistence of this extensive cloud deck. Although the GOES images 
depict a cellular cloud pattern, a review of film from the Electra side-viewing movie 
cameras reveals that breaks in the stratocumulus were very rare so that the fractional 
cloudiness in this case was essentially 100%. 

Further data relevant to the cloud top evaporative instability theory were recently 
acquired as part of the FIRE marine stratocumulus field project. From a site on the 
north-west tip of San Nicolas Island, California, during the period 30 June to 19 July 
1987, Schubert et al. (1987a, b) obtained sixty-nine high vertical resolution (about 15 m) 
radiosonde soundings and a nearly continuous laser ceilometer record of stratocumulus 
cloud base height. The ceilometer record shows that the 30 June to 19 July period can 
be characterized as quite cloudy, with fifty-five of the sixty-nine soundings being released 
with stratocumulus overhead. For each of these fifty-five soundings we have determined 
the cloud top total water jump Ar as follows. We first compute the vertically averaged 
water vapour mixing ratio in the layer which extends from 60 m to 240 m above cloud 
top. We then subtract from this the average water vapour mixing ratio in the layer which 
extends from 65 m to 165 m above sea level (the island sounding site being 38 m above 
sea level). This water vapour mixing ratio difference should be equivalent to the cloud 
top jump in total water if the boundary layer is well mixed. The procedure for determining 
A9, is identical. In this way each of the fifty-five soundings was characterized by a point 
in the (AOe, Ar) plane as shown in Fig. 4. As can be seen, forty of the fifty-five points 
lie on the stable side of the thermodynamic stability line while fifteen lie on the unstable 
side. According to the ceilometer record, seven of the unstable cases show cloud breakup 
within twelve hours while four of the stable cases show breakup within twelve hours. 
The cases exhibiting breakup are indicated in Fig. 4 by the partially blackened symbols, 
with the fraction of blackening indicating the fraction of twelve hours before cloud 
disappearance. The occurrence of eight fully blackened symbols on the unstable side of 
the critical stability line reaffirms our previous conclusion that persistent cloudiness is 
possible under unstable conditions. The occurrence of partially blackened symbols on 
the stable side of the critical stability line indicates that cloud top evaporative instability 
is not the only mechanism for breakup. 
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Figure 2. The fl, soundings at 1757 (a) and 2233 (b) GMT 9 August 1985 associated with the stratocumulus 
fields shown in Fig. 3. 
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Figure 3. GOES visible images for 1803 (upper) and 2333 (lower) GMT 9 August 1985. The box indicates the 
area of aircraft observations from which the soundings shown in Fig. 2 were obtained. 



CLOUD-TOPPED BOUNDARY LAYERS 893 

San Nicolas Island, Culifornia 

0 .  
30June-19 July 1987 , 0 

0 

Figure 4. The (A@,, Ar) plane, with the critical thermodynamic instability curve (AO, = k(L /c , , )Ar ) .  Plotted 
points have been obtained from fifty-five high vertical resolution soundings taken during stratocumulus 
conditions on San Nicolas Island, California during the period 30 June to  19 July 1987. The cases exhibiting 
breakup are indicated by the partially blackened symbols, with the fraction of blackening indicating the fraction 
of twelve hours before cloud disappearance. Fully blackened symbols indicate that conditions remained cloudy 
for at least twelve hours. Note the existence of persistent stratocumulus under conditions which are unstable 

according to the thermodynamic theory of evaporative instability. 

Because of the existence of persistent cloudiness under unstable conditions, one 
might reasonably question whether evaporative instability actually exists or, if it does, 
whether it possesses rapid enough growth rates to be of physical significance. In the 
remainder of this paper we shall attempt to address these questions. In section 2 we 
perform a more thorough thermodynamical analysis which demonstrates the dependence 
of the buoyancy of Lilly's mixed parcel on the relative masses of the original two unmixed 
parcels. The relative masses (' in the equation set (3)-(9)) remain an undetermined 
parameter in the thermodynamic theory. In section 3 we introduce what we consider to 
be the simplest dynamical model capable of removing this arbitrariness in the choice of 
x. Thus, section 3 takes us from the realm of thermodynamic theories of evaporative 
instability into the realm of dynamic theories. We can then perform integrations in 
which we perturb initial soundings which are judged to be unstable according to the 
thermodynamic theory. In section 4 we describe experiments based on initial soundings 
associated with the four points labelled A to D in Fig. 1. These results confirm the 
existence of evaporative instability. At the same time they give estimates for the depen- 
dence of the time scale and li€e cycle of the instability on the cloud top jumps in 8, and 
r ,  thereby providing a basis for interpreting the data in Figs. 1 and 4. 
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2. THERMODYNAMIC THEORY OF CLOUD TOP EVAPORATIVE INSTABILITY 

In order to better understand the thermodynamic theory of cloud top instability we 
now follow an argument similar to that given by Albrecht et al. (1985) and Nicholls and 
Turton (1986). Consider a unit mass mixture consisting of x mass units of warm dry air 
from just above the inversion and 1 - x mass units of cool moist air from just below the 
inversion. Using the subscripts a and b to denote respectively the above-inversion parcel 
and the below-inversion parcel, we obtain 

8, = XOca + (I - X)8& = 8,, + XAB, 

r = Xr, + (1 - X)r, = rb + XAr 

( 3 )  

(4) 

and 

for the equivalent potential temperature 8, and the total water mixing ratio r of the 
mixed parcel. If we also know the height, z ,  of the mixed parcel, we can use the 
Boussinesq version of the theory of moist convection (Ogura and Phillips 1962) to obtain 
the potential temperature 8, the water vapour mixing ratio q ,  the saturation water vapour 
mixing ratio q* and the liquid water mixing ratio 1 from the four equations 

0 = Be - (L/c , )q  ( 5 )  

Here L is the constant latent heat of condensation, R,, the gas constant for water vapour, 
0,) a constant reference potential temperature, ?*(z) = 0.622e*(T(z))/pO, a known func- 
tion of 2, p ,  = 100kPa, and T ( z )  = 8, - gz/c,. For the present calculations we have 
chosen 8,, to be 288.15K and have used Teten’s formula for the saturation vapour 
pressure e*. To actually solve (5)-(8) for 8, q ,  q*, 1 from given 2, Oe, r we can proceed as 
follows. First assume the second alternative in (7 ,8) ,  i.e. r 5 q* and ( q , l )  = ( r ,O) ,  so 
that 8 can be computed from ( 5 )  with q replaced by r. Next compute q:’ from (6) and 
check to see if r 5 q*, as originally assumed. If a contradiction is reached, we conclude 
that r > q*;  we must then iteratively adjust 8, q (which now equals q*) and 1 until we 
obtain the solution of ( 5 ) ,  (6) and the first alternative in (7.8). A rapidly convergent 
refined Newton scheme for doing this is discussed in section 3. After solving (5)-(8) we 
can compute the mixed parcel’s virtual potential temperature 8, from 

e, = 0 + e,(sq - I) (9) 

where 6 = 0608. From a comparison of 8” with Ovb we can predict whether the mixed 
parcel is likely to rise or sink. Thus, (3)-(9) form the basis for the thermodynamic theory 
of cloud top entrainment instability. 

Now consider Oeb = 316 K, rb = 10.5 g kg-’ and 

for case A 

(-6K, -15K) forcaseB 

(- 11 K, -20 K) for case C 
(A%, (L/c,)Ar) = 

I( - 16 K,  -25 K) for case D. 
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Note that all these cases have cloud top liquid water contents of 0.38 g kg-', that they all 
lie along the A8[ = 9 K  line in Figs. 1 and 4, and that only case A satisfies (2). Using the 
above values in the right-hand sides of (3) and (4), and then solving (S)-(9), we obtain 
the four curves shown in Fig. 5 .  The kinks in these curves occur when x becomes large 
enough that the mixed parcel is no longer saturated, i.e. where the solution switches 
from the first to the second alternative in (7,8). For sounding A there is apparently no 
value of x between zero and unity which will lead to negative buoyancy of the mixed 
parcel. On the contrary, for soundings B to D small values of x lead to negative buoyancy 
and perhaps to instability, if such small values of x are naturally selected by the dynamics. 
Although the four curves in Fig. 5 were all obtained with a cloud top liquid water content 
of 0.38 g kg-' , the curves for higher liquid water contents are similar except that the kinks 
are shifted to larger values of x, which allows for larger negative buoyancy in the unstable 
cases. 

- 1.0 
0.00 0.05 0.10 0.15 0.20 

X 
Figure 5 .  The 8, difference against the fraction (2) of the unsaturated air involved in the mixture for cases 

A ,  B, C and D. The mixing ratio of liquid water content in the cloudy parcel is 0.38gky.' .  

In order to derive (2) from (3)-(9) we now attempt to find an analytical approximation 
for the buoyancy 8, - 8 v b  when x 5 2, with 2 denoting the smallest value of x which 
causes the liquid water content of the mixed parcel to vanish. Using (4) and (9) we obtain 

8" - 8 v h  = 8 - 8 b  + 8,{(1 + 6) (4  - q h )  - XAr}. (11) 
For x 5 x ,  q and q h  are saturation values given in terms of 8 and 8 h  by (6). If we 
approximate the right-hand side of (6) by the first two terms in its Taylor series expansion 
about 8 = 8 h  we obtain 

(L/cp)(q" - 4 ; )  = y(@ - Oh) = { Y / ( l  -k Y>>(@e - @ch) (12) 
where y = (L/c,,)aq*/d8. Using (3) and (12) in (11) we obtain 
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where 

If the term within the parentheses of (13) is negative, all mixtures with 0 < x 5 will be 
negatively buoyant. On the other hand, if the term within the parentheses is positive, 
we conclude that there will be no mixture which is negatively buoyant. Thus, according 
to the thermodynamic theory of evaporative instability, (2) is the condition for stability 
of a cloud-topped mixed layer. 

Why should the predictions of the seemingly plausible thermodynamic theory of 
cloud top evaporative instability be at odds with observations? Is it possible that the 
small values of x required for instability are somehow precluded by the dynamics? To 
answer these questions we must remove the arbitrariness in the specification of x and 
thereby formulate a closed physical argument. This requires that ( 3 )  and (4) be replaced 
by the conservation laws for 8, and r while the x parameter is removed by the information 
content in the momentum equations. Unfortunately, this makes the mathematical prob- 
lem complicated enough that analytical progress is difficult. This leaves numerical simu- 
lation as a reasonable alternative. In the remainder of this paper we shall describe the 
simplest possible two-dimensional dynamical formulation which can replace (3)-(9). We 
shall then compare numerical simulations based on the four initial states associated with 
the points A to D in Fig. 1. The reader who is not interested in the details of the 
dynamical model may wish to skip directly to section 4, where the numerical results are 
presented. 

3 .  TWO-DIMENSIONAL BOUSSINESQ MODEL 

( a )  Governing equations 
The starting point for our model is the formal scale analysis of Ogura and Phillips 

(1962), who derived the anelastic equations under the assumptions that the percentage 
range of potential temperature is small and the time scale is set by the Brunt-Vaisala 
frequency. The anelastic equations reduce to the Boussinesq equations under the 
additional assumption that the vertical scale of motion is small compared with the depth 
of an isentropic atmosphere. Since the above assumptions are justified for the marine 
boundary layer problem, we shall use Ogura and Phillips' Boussinesq equations for 
shallow moist convection. If the flow is constrained to be two-dimensional we can write 
these equations in the vorticity/streamfunction form 
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8, = 8 + oo(sq - I ) .  (22) 
This is a closed system in q, (, 8, 8,, 8,, q, q*, I and r, where q and ( are the 
streamfunction and vorticity, 8 the potential temperature, BC the equivalent potential 
temperature, 8, the virtual potential temperature, q and q* the mixing ratio and saturation 
mixing ratio of water vapour, 1 the mixing ratio of liquid water, and r the mixing ratio 
of total water (vapour plus liquid). The terms 9, % and X represent processes on 
unresolvable scales and will be discussed below. The effects of both water vapour and 
liquid water on buoyancy are included in (22) and in the last term on the right-hand side 
of (15). After prediction of Oe and r from (16) and (17), iteration is required to diagnose 
0, q ,  q* and 1 from (18)-(21). Finally, by comparing (3)-(9) with (14)-(22), we note that 
the thermodynamic theory’s mixing relations (3)-(4) are replaced by the dynamic theory’s 
vorticity and conservation relations (14)-(17). 

We shall solve (14)-(22) on the domain 0 5 x 5 L ,  0 5 z I H ,  with the assumption 
that all variables are periodic in x and I) = 0 on z = 0,H. In the following section we 
discuss an accurate spectral method (Fourier-Chebyshev tau method) for solving the 
system ( 14)-( 22). 

(b )  Spuce and time discretizution 
The strong gradients of temperature and moisture which are produced in marine 

boundary layer convection place great demands on spatial discretization schemes used 
in simulation models. In the present work we have used a scheme which is spectral in 
both the horizontal and vertical directions. In the horizontal, Fourier basis functions are 
used so that the periodicity is built into each basis function. In the vertical, Chebyshev 
polynomial basis functions are used; the upper and lower boundary conditions are not 
satisfied by each basis function, but rather by the series as a whole. 

The dependent variables v ,  f ,  O e ,  8, and rare  approximated by the series expansions 

where the Tn(z’) are the Chebyshev polynomials defined on the interval - 1 5 z‘ 5 1 by 
T,(Z’) = cos(n@) with z’ = 2z/H - 1 = cos @. Let us define the Fourier-Chebyshev inner 
product of two functions f ( x ,  z) and g(x,  z )  as 
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where the * denotes complex conjugate. The spectral coefficient Gmn(t) is given by 

with 

2 n = O  

c n = [  1 n > 0 .  

Similar relations hold for tmn(t), e,,,(t), 8,,,(t) and trn,(t). Equation (25) is the 
transformation from physical space to Fourier-Chebyshev spectral space and (23) is the 
transformation back. 

The coefficients in (23) are determined by requiring the residual in (lS), (16) 
and (17) to be orthogonal to all the basis functions Tn(z')e2nimr/L ( -M  5 m 5 M and 
0 5 n 5 N ) ,  the residual in the Poisson equation (14) to be orthogonal to all the basis 
functions except those for which n = N - 1, N ,  and the boundary conditions on I) to be 
satisfied by the series as a whole. Thus, with the nonlinear terms defined by 

the tau equations are 

... N - 2) 

N 

p = o  

where A:;'), c:ho), ,!?$A"), &b:) are the spectral coefficients of dA/dx, dC/dx, d E / d x ,  
dev/dx and I?:;), @;'), p:;') are the spectral coefficients of dB/dz, dD/dz, dF/dz .  
Likewise $,,, %mn and $fm, are ?he spectral coefficients of 3, % and X .  Some of the 
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details in the derivation of (27)-(30) are given in the appendix. The relation between 
A::) and A,, (the spectral coefficient of A )  is 

A :A") = i ( 2 n m / ~ ) A  ,, (31) 

with similar relations for &'), 8:;") and &,$I, As discussed in the appendix the relation 
between Bgt) and B,, (the spectral coefficient of B )  is 

, N  

p+n odd 

with similar relations for fig;:) and fis;;'). Although the spectral evaluation of z derivatives 
by (32) looks at first sight more difficult than the spectral evaluation of x derivatives by 
(31), such is not the case. Equation (32) yields the (backward) recurrence formula 

n = 1,2,  ... , N  - 1 (33) cn-1 &0,1, m,n-1 - B(0 m:n+ l  1 )  = ( 4 I ~ ) n B m . n  
- ( I )  1) (0. I )  with the starting values Bm:N+l = Bm,N = 0. For fixed m, the use of (33) allows the N 

values of 8C;l) to be computed in O ( N )  operations. The transform method (Orszag 1970; 
Eliasen et al .  1970) is used in computing the spectral coefficients A,,, B,,, em,, Bm, , ,  E m ,  

and Fm,,. To eliminate aliasing error in the quadratic nonlinear terms, 3M points in x and 
3N/2 points in z are needed in the physical domain. 

The unresolvable scale processes represented by 9, (8 and X are handled in spectral 
space by specifying the terms on the right-hand sides of (28)-(30) in the following way: 

g,, = -k , (2nm/L)2[m,  - k,(2nn/H)4[,n 1 
%mR = -kX(2nm/L)*i, ,  - k , ( 2 ~ n / H ) ~ i , , , ,  1 

where we have chosen k,  = 2.25 m2s1' and k, = 10m4s-'. The choice of (34) is the most 
uncertain aspect of the model. However, it is generally believed (e.g. Machenhauer 1979) 
that simple scale-selective dissipation such as (34) is required to prevent the spectral 
blocking associated with cascades to smaller spatial scales. We have performed limited 
tests of the sensitivity of our results to the numerical values of k, and k,. These tests 
show only subtle changes in the results when k ,  and k ,  are varied by factors of two. 

In the numerical time integration of the above equations, we must solve (27) at each 
time step. For a given m (-M 5 m 5 M )  we regard (27) as a linear algebraic system in 
the N + 1 unknowns Gm, (0 5 n 9 N ) ,  with known right-hand side fm,. The matrix 
structure of this linear system is upper triangular except for the last two rows, which 
come from the boundary conditions. There are many possible ways to solve (27), two of 
which are discussed by Gottlieb and Orszag (1977, pages 119-120). Because (27) holds 
for each m separately, direct methods are a reasonable alternative, a situation which 
does not exist when Chebyshev expansions are used in both directions. 

Using simple model equations Fulton and Schubert (1987a, b) have investigated the 
relative merits of various time differencing schemes for Chebyshev spectral methods. 
When the time step is limited by accuracy rather than stability (as is apparently the case 
here), fourth-order schemes are more efficient than second-order schemes. As a general 
rule Fulton and Schubert have found the fourth-order Runge-Kutta scheme to be the 
most useful, and it has been used here for the time integration of (28)-(30). 
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(c )  Condensation and evaporation 
At each point in physical space on the transform grid, we must solve (18)-(21) 

iteratively. Beginning with the values of 8, and r predicted from (16) and (17), we first 
assume that r 5 q*. If this assumption leads to a contradiction, we must conclude that 
r >  q” and q = q*. Then, q can be eliminated between (18) and (19) to obtain 

L -  o - o, 
CP 

G(8) = o + -q* exp (35)  

which must be solved iteratively for 8. If we are at iteration ZI + 1, two approximations 
to G ( 0 )  = 0 are 

G(@“’) + G‘((j(”))(o(”+t’, - @”)) = 0 (36) 

(37) 

and 
G(@”)) + G’(o(”))(8(”+0 - ,$4) + @ n ( o ( v ) ) ( o ( v + l )  - @y))2 () 

where 8(”) is the value of potential temperature at iteration v and the prime denotes 
differentiation with respect to 8. If we approximate the last term in (37) by the value of 
8(”+’) - #(”) determined in (36) we obtain 

which is a refined Newton scheme. The refined Newton scheme finds frequent application 
in numerical analysis, e.g. in the calculation of Gaussian quadrature points (Davis and 
Rabinowitz 1984, page 114). It reduces to the ordinary Newton scheme if the second 
derivative term in the braces is neglected. According to Langlois (1973), the estimation 
of 8 by (38) is accurate enough that iteration is not necessary. Our experience is almost 
as good; we have found that (38) produces a machine accurate solution to (35)  in only 
three iterations even when the initial guess of 13 is off by 10 K. In the model integrations 
discussed here we have applied (38) four times at each time step. 

( d )  Model parameters 
For the integrations presented here we have chosen the model domain to be 

2500m in the (periodic) horizontal direction and 800m in the vertical. In the spectral 
discretization we have chosen N = M = 64. The transform grid for the calculation of 
nonlinear and diabatic terms consists of 192 equally spaced points in the horizontal and 
96 unequally spaced points in the vertical, giving an approximate resolution of nearly 
10 m in each direction. A four-second time step is used in the fourth-order Runge-Kutta 
time integration. This four-second time step retains the full accuracy of the spatial 
discretization. 

4. NUMERICAL EXPERIMENTS 

To test the evaporative instability theory we now consider four initial value experi- 
ments which isolate the interactions between evaporative cooling and dynamics by 
neglecting the complicating effects of infrared radiative cooling, large-scale subsidence 
and sea surface fluxes. The four initial soundings used here are associated with the 
(AOC, Ar) points labelled A to D in Fig. 1. All four initial soundings consist of a 450m 
deep layer with a uniform equivalent potential temperature of 316 K and a uniform total 
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water mixing ratio of 10.5 g kg-'. This produces a cloud layer extending from 225 m to 
450 m with liquid water increasing adiabatically with height to a peak value of 0.38 g kg-' . 
Capping this 450 m deep boundary layer is an inversion layer of 100 m depth. The air 
above the inversion is different in each experiment and has properties such that changes 
in equivalent potential temperature and total water mixing ratio across the inversion are 
given by (10). Since AO1 = 9 K in all four cases, the strength of the temperature inversion 
is essentially the same for each case. In order to initiate any existing instability in these 
four atmospheric states, we superimpose on the soundings a motionless state with a 1 K 
cold anomaly just below the inversion (e.g. Fig. 6 for case A). Our motivation for this 
initial condition is that such cold anomalies are continuously produced by radiative 
cooling near cloud top. In fact, in the absence of other physical processes, cold anomalies 
such as this could be generated in about 10 minutes by an 80 W m-* infrared radiative 
flux divergence across cloud top. 

THETR E. RND U W A T  TIME O.OOOE+OO [SECI 

Figure 6. 

800 

600 

- 
E 400 
N 

200 

0 
0 500 1000 1500 2000 2500 

X [ M )  
The initial Be and velocity fields for experiment A. Oe contour intervals as in Fig. 7 

The results from experiments A, B, C and D are shown in Figs. 7 to 10. The 8, 
fields with a contour interval of 0-25 K inside the boundary layer are superimposed on 
the velocity fields in the upper part of these figures. The lower part shows the cloud 
liquid water content with a contour interval of 0.05 g kg-'. The results from experiment 
A are presented at 20-minute intervals in Fig. 7. From the 19, and velocity fields we note 
how the cold bubble sinks to the surface to form symmetric circulations while exciting 
laterally propagating gravity wave oscillations in the capping inversion. The entrainment 
associated with the sinking cold fluid leads to low liquid water content in the centre of 
the domain at 20 minutes (Fig. 7(a)). However, a permanent cloud hole does not form, 
and the cloud returns to a nearly horizontally homogeneous state at 120 minutes 
(Fig. 7(f)). This is consistent with thermodynamic theory, which predicts stability for this, 
sounding. 
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The output of experiment B at 20-minute intervals is shown in Fig. 8. In Fig. 8(a) 
we see the formation of a narrow cloud hole in the centre of the domain. The hole then 
shrinks near cloud top and expands near cloud base due to the arrival of the previously 
entrained air. At 60 minutes the results of experiment B begin to diverge in a fundamental 
way from those of experiment A. In contrast to experiment A we note that in experiment 
B two regions of minimum BC near the cloud top ( z  = 400 m, x = 450 and 2050 m) are 
generated by gravity waves in the capping inversion at 60 minutes. Because these local 
minimum 8, regions are inside the cloud (saturated), new regions of entrainment will 
form. These new regions of entrainment can be clearly seen in the remaining figures 
(Figs. 8(d), (e) and (f)). Although this apparently confirms the existence of evaporative 
instability for sounding B, the growth rates in this case are not rapid enough to cause 
more than a slight decrease in fractional cloud cover in our 120-minute integration. 

The generation of regions of entrainment by gravity wave oscillations in the inversion 
as well as the final breakup of stratocumulus can be clearly seen in experiments C and 
D (Figs. 9 and 10). By comparing corresponding pictures for all the unstable experiments 
(Figs. 8a, 9a and IOa), we note only subtle differences between experiments B and C 
while there are already new regions of entrainment generated at 20 minutes in experiment 
D. Figures 9(b) and 10(b) reveal some similarity between experiments C and D at 
60 minutes, i.e. cloud holes in the centre of the domain and several new regions of 
entrainment. However, there are more regions of entrainment in experiment D than in 
experiment C. As a result, the cloud in experiment D is thinner and more broken in 
appearance. Entrainment subsequently breaks the stratocumulus into shallow, weak 
cumulus (Figs. 9(c) and lO(c)). In these idealized experiments evaporative instability 
seems to be a process in which large cloudy regions are dissected into smaller cloudy 
regions with widening clear gaps in between. 

It is interesting to note the different breakup times for each of the unstable 
experiments. If we define the ‘cloud half-life’ as the time required for half of the total 
liquid water in the model domain to disappear, we obtain 167, 43 and 34 minutes for the 
approximate half-lives in experiments B, C and D respectively. Although the initial 
sounding in experiment A is stable, the cloud still loses liquid water due to evaporation 
induced by entrainment. This rate of loss of liquid water in the stable experiment A is 
roughly the same as the rate of loss in the unstable experiment B-a fact which underscores 
the weak nature of the instability in experiment B. 

We are now in a position to interpret the observations of persistent stratocumulus 
on the unstable side of the critical curve in Fig. 1. With soundings such as B, the existence 
of evaporative instability is not sufficient to guarantee cloud breakup because surface 
evaporation and upward transport processes can apparently provide enough water vapour 
to compensate for the evaporative effects associated with the weak evaporative instability. 
For soundings such as D, the cloud half-life is much smaller, and cloud breakup is to be 
expected. 
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Figure 7. The 8, and velocity fields (upper) and the liquid water mixing ratio fields (lower) for experiment 
A at 20, 40, 60, 80, 100 and 120 minutes ((a) to ( f ) ) .  The Oe fields are analysed with a contour interval of 
0.25 K while the liquid water mixing ratio fields are analysed with a contour interval of 045gkg- ' .  Thc liquid 
watcr mixing ratio lines are labelled in g kg ' multiplied by 1000. Arrows represent wind velocity scaled by 
maximum velocity. The maximum velocity at each time is as follows: (a) 0.96 m s-'; (b) 0.61 m s ~ ' ;  (c) 1.02 m s I ;  

(d) 0.93111s-I; (e) 1.40ms-I; ( f )  0.97ms-'.  
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Figure 7 (continued) 
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Figure 7 (continued). 
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Figure 8. As Fig. 7 but for experiment B. The times and the maximum velocities are as follows: 
(a) 20 minutes, 1 .03ms- ' ;  (b) 40 minutes, 0.68111s-'; ( c )  60 minutes, 0.56111s-'; (d) 80 minutes, 0 .49ms- I ;  

( e )  100 minutes, 0.44 m s '; (I) 120 minutes, 0.43 m s I. 
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Figure 9. As Fig. 7 but for experiment C .  The times and the maximum velocities are as follows: 
(a) 20 minutes, 1.04ms-'; (b) 60 minutes, 067ms-I ;  (c) 120 minutes, 0.33ms-I. 
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Figure 10. As Fig. 7 but for experiment D. The times and the maximum velocities are as follows: 
(a) 20 minutes, I . lOms '; (b) 60 minutes, 0.65ms-'; (c) 120 minutes, 0,53ms- ' .  
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5 .  CONCLUDING REMARKS 

Our approach to the evaporative instability problem differs from others which have 
appeared in the recent literature such as those which use one-dimensional models (e.g. 
Chen and Cotton 1983) or those which examine much larger horizontal scales of motion 
(e.g. Moeng and Arakawa 1980). Our approach also differs from that of Deardorff 
(1980a, b), and it may be of some interest to interpret his experiment in terms of Fig. 1. 
Deardorff tested the evaporative instability theory using a three-dimensional moist 
convection model on a 2 km x 2  km x 2  km domain with the rather coarse horizontal and 
vertical resolution of 50 m. Beginning with a sounding which was stable according to (2), 
he rapidly cooled the air above the cloud in order to induce evaporative instability. In 
terms of Fig. 1 ,  this procedure can be interpreted as forcing the mean model sounding 
from the stable point (AO,, (L/c,,)Av) = (2.5 K, -6K) across the stability line to the 
unstable point (AO,, (,!,/cp)Av) = (-3K, -6K). During this 90-minute period AOl 
decreases from 8 .SK to 3K,  the convective layer deepens from 1450m to l80Om, and 
the entrainment rate increases by a factor of 5.9. Deardorff interpreted this increase in 
entrainment as due to instability. However, even in the absence of instability, entrainment 
will increase due to the decrease in AO,. In order to avoid this ambiguity in interpreting 
model results and to emulate the organization of the data in Fig. 1 ,  we have chosen our 
initial value experiments A to D to have identical values of AO,, with the degree of 
entrainment instability in the soundings determined entirely by the moisture content of 
the air above the inversion. 

Although we have directed our attention toward stratocumulus clouds, our results 
may also aid in understanding the structure of cumulus clouds. Recently, Klaassen and 
Clark (1985) have discovered a cloud top nodal instability in their high resolution two- 
dimensional model of non-precipitating cumulus convection. Because of this cloud- 
environment interface instability, simulated small cumulus quickly develop nodes on a 
previously smooth cloud top. Under certain conditions the growth of these nodes can 
cause the entrainment and penetration of dry air deep into the cloud interior. Although 
there are undoubtedly differences in the way instability is triggered in our stratocumulus 
model and in Klaassen and Clark’s cumulus model, there is sufficient gross similarity in 
the evolution of the flow patterns that we might interpret Klaassen and Clark’s results 
in terms of Fig. 1. Klaassen and Clark’s interface instability seems to be enhanced when 
the smooth cumulus cloud top begins to penetrate into a very dry overlying layer. At 
this time, the cumulus updraught has brought up air with high 8, and high r so that it is 
in contact with the low 8, and low r overlying air. In terms of cloud top jumps, this 
corresponds roughly to a situation near point C in Fig. 1. However, liquid water contents 
in Klaassen and Clark’s cumulus simulations are two or three times larger than in our 
stratocumulus simulations. Thus, the potential for negative buoyancy in the cumulus case 
is larger than shown in our Fig. 5 ,  a fact which is consistent with the vigorous form of 
instability in Klaassen and Clark’s simulations. 

In closing we would like to add the observation that we have chosen to use our 
computing resources to obtain high resolution two-dimensional simulations rather than 
lower resolution three-dimensional simulations. Obviously, our conclusions need to 
be substantiated by high resolution three-dimensional modelling such as that recently 
performed by Moeng (1986) and by Tag and Payne (1987). 
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APPENDIX 

Equations (27)-(30) are obtained by taking the Fourier-Chebyshev inner product 
(defined by (24))  of each of the equations (14)-(17) with the basis function 
~ , (~ ' )~2~in ix / l .  . F~ r example, from (1.5) we obtain (28) with Aii:'), bi,);') and $,:!) given 

by 

To evaluate (A.2) we substitute the Fourier-Chebyshev expansion for B to obtain 

Using the Chebyshev derivative relation 

it is easy to show that 

which allows (A.4) to be written as 

n'+n odd 

The derivations of (29) and (30) proceed similarly. The derivation of (27) involves second 
derivatives. Taking the Fourier-Chebyshev inner product of (14) with Tn(z')e2niw?w/'- we 
obtain 
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To evaluate the first term we substitute the Fourier-Chebyshev expansion for to obtain 

(A.9) 

Differentiating (A.5) with respect to z’ and then using (A.5) itself, it can be shown that 

(n/2)n’(nf - n’) m’ = rn and n’ + n even, n + 1 < n’ 

otherwise 
(A.lO) 

which allows (A.8) to be written 

(A.ll)  
n’+n even 

Equation (A. l l )  is required to hold for n = 0,1,2, ... , N  - 2. The boundary conditions 
V(x ,  0, t )  = V ( x ,  H ,  t )  = 0 are then used to close the system. 
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