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ABSTRACT

An elliptical eye that rotated cyclonically with a period of approximately 144 minutes in Typhoon Herb 1996
was documented. The elliptical region had a semimajor axis of 30 km and a semiminor axis of 20 km. Two
complete periods of approximately 144 min were observed in the Doppler radar data. The rotation of the elliptical
eye in the context of barotropic dynamics at three levels were explored: linear waves on a Rankin vortex, a
nonlinear Kirchhoff vortex, and with a nonlinear spectral model. The linear wave theory involves the existence
of both the high (potential) vorticity gradient near the eye edge and the cyclonic mean tangential flow in the
typhoon. The propagation of (potential) vorticity waves in the cyclonic mean flow makes the elliptical eye rotate
cyclonically. The rotation period is longer than the period of a parcel trajectory moving in the cyclonic mean
flow around the circumference, because the vorticity wave propagates upwind. The nonlinear theory stems from
the rotation of Kirchhoff’s vortex. Estimates of the eye rotation period from both linear and nonlinear theories
agree with observations of the eye rotation period when the observed maximum wind from Herb is used. Nonlinear
numerical computations suggest the importance of the interaction of neutral vorticity waves, which determine
the shape and the rotation period of the eye. The calculations also support the rotation of the eye in approximately
144 min in the presence of axisymmetrization, vorticity redistribution, wave breaking, and vortex merging
processes.

1. Introduction

The eyewall of a typhoon is often circular in shape.
However, using photographic records of storms ob-
served with both land-based and airborne radars, Lewis
and Hawkins (1982) documented cyclonically rotating
polygonal eyewalls. A wide variety of shapes was ob-
served, including triangles, squares, pentagons, hexa-
gons, and incomplete versions of many polygons. Cir-
cular and elliptical shapes were also noted in their re-
view, but such smooth shapes were often quickly re-
placed by polygonal features. Because they found
polygonal eyewalls using airborne 5-cm radars far off-
shore, Lewis and Hawkins concluded that proximity to
land is not a requirement for the generation of polygonal
features. Lewis and Hawkins concluded that polygonal
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eyewalls could be attributed to the partial reflection of
inward propagating gravity waves with different wave-
number and periods, an idea whose origin is in the the-
oretical work of Kurihara (1976) and Willoughby
(1978). Unfortunately, the period of rotation of the po-
lygonal features was not examined in the Lewis and
Hawkins study.

Using a remarkable 15-h record from land-based ra-
dar, Muramatsu (1986) also observed polygonal eye-
walls in Typhoon Wynne 1980. The polygonal features
consisted of cyclonically rotating squares, pentagons,
and hexagons. The pentagons and hexagons had rota-
tional periods of approximately 42 min, and the squares
had periods of approximately 48 min. This decrease in
the rotational period with increasing tangential wave-
number will be discussed further in the theoretical ar-
gument presented here.

Typhoon Herb in 1996 was the strongest typhoon to
hit Taiwan in the last decade. Based on wind obser-
vations 700 m above mean sea level on Wu-Feng Moun-
tain, the maximum wind in Herb was estimated to be
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FIG. 1. Horizontal distribution of maximum reflectivity in the vertical column for Typhoon Herb from the Central Weather Bureau WSR-
88D (10 cm) radar at Wu-Feng Mountain on 31 Jul 1996. The sequence of images is from left to right and from top to bottom. The time
interval between each image is approximately 18 min. The local time of observation is indicated on top of each image. The major axis
radius in the eye region is about 30 km and the minor axis radius is about 20 km. The nine images illustrate one eye rotation period of 144
min.

60 m s21 or higher [see also Lee (1997) for Doppler
winds analysis]. It destroyed the newly installed Central
Weather Bureau WSR-88D Doppler radar on Wu-Feng
Mountain. Before the destruction of the radar, the radar
pictures revealed that Herb had an elliptical eye that
rotated cyclonically with a period of approximately 144
min. Two complete periods were observed. The objec-
tive of this paper is to document the elliptical eye ro-
tation and to explore possible mechanisms for the eye

rotation. Section 2 gives the radar observations and the-
ories for the eye rotation. Numerical results are pre-
sented in section 3, and concluding remarks are in sec-
tion 4.

2. Observations and theories

Figures 1 and 2 are the radar pictures of Typhoon
Herb from the Central Weather Bureau WSR-88D
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FIG. 2. Similar to Fig. 1 except for the second rotation period. In this observation period Typhoon Herb is closer to the radar.

Doppler radar. The sequence of the pictures in each
figure is from left to right and from top to bottom,
and the time interval between each image is approx-
imately 18 min. Each of the two sets of images in
Figs. 1 and 2 illustrate one complete cyclonic eye
rotation with a period of 144 min. Thus, there are two
complete periods of approximately 144 min in the
elliptical eye rotation that have been observed with
the radar. Since the radar pictures in Figs. 1 and 2
represent the maximum reflectivity in each vertical

column, the elliptical eye is a deep tropospheric phe-
nomenon. Other PPI images (not shown here) indicate
that the elliptical eye is the most dominate feature at
each vertical level. Significant polygonal features
were not observed on any individual level, although
some irregular eyes in the images were noticed in the
second rotation period. In this observation period, Ty-
phoon Herb is closer to Taiwan. The elliptical region
observed in the figures has a semimajor axis of 30
km and a semiminor axis of 20 km, approximately.
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It is interesting to note that there was often deep con-
vection (strong reflectivity regions) near the tips of
the major axis in the elliptical eye.

The timescale for a parcel circulating around the cir-
cumference of the eye region, based on the observed
maximum wind of 60 m s21 and on the size of the major
axis and minor axis, was approximately 50 min. The
elliptical eye rotation period of 144 min is much longer
than the parcel circuit time. The existence of an elliptical
eye with a long period of rotation (144 min) in Typhoon
Herb seems to be a unique feature that has not been
found in previous studies.1 An important question is,
what mechanism caused the elliptical eye to rotate more
slowly than the period related to the maximum wind
speed?

We consider the elliptical eye shape as a wavenumber
2 asymmetry of a circular eye. The eye is viewed as a
region of nearly constant and high (potential) vorticity
with a large (potential) vorticity gradient at its edge.
Under the conservation of (potential) vorticity, the gra-
dient of (potential) vorticity provides a state on which
(potential) vorticity waves (the generalization of Rossby
waves) can propagate. Thus, the wavenumber 2 asym-
metries near the eye edge should propagate to the left
of the vorticity gradient, which means that the asym-
metries should move upstream with respect to the mean
flow. This effect would cause the elliptical eye to rotate
anticyclonically with respect to the mean wind. How-
ever, with the strong cyclonic tangential mean flow in
the typhoon, the wave asymmetries should propagate
downstream, but with a propagation speed slower than
the advective speed. This wavenumber 2 asymmetry
propagation corresponds to a cyclonic elliptical eye ro-
tation. The linear analysis of the (potential) vorticity
wave on a Rankine vortex was done by Sir William
Thomson (Lord Kelvin) in 1880 (Thomson 1880) and
was summarized by Lamb (1932) and by Guinn and
Schubert (1993). His analysis indicates that the speed
of the wave is given by

1
c 5 V 1 2 , (2.1a)max1 2m

with Vmax the maximum tangential speed of the cyclonic
mean flow and m the tangential wavenumber. Equation
(2.1a) indicates that wavenumber 1 is stationary and
wavenumbers m 5 2, 3, and 4 move, respectively, at
½, ⅔, and ¾ the speed of the basic-state tangential flow.

1 Kurihara and Bender (1982) found in their 5-km resolution mod-
eling study of tropical cyclones that asymmetry in the vortex structure
is evident in various fields. Regions of anomalous rainfall intensity,
temperature anomaly, and ascending motion are simulated at a few
locations within the eyewall. The asymmetric features within the
eyewall moved cyclonically at a much smaller rotation rate than the
cyclonic wind within the eyewall. Attention in the paper is given to
the balance between the wind and pressure fields and to the budgets
of angular momentum, heat, and water vapor.

For the elliptical eye we take the m to be 2. The angular
velocity is then va 5 c/r 5 Vmax/2r and the rotation
period is

2p 8p
P 5 5 , (2.1b)

v za

where z 5 2Vmax/r is the vorticity inside the eye region.
When the period of 144 min is considered, the vorticity
strength from (2.1b) is about 3 3 1023 s21. With the
size of Typhoon Herb, the 3 3 1023 s21 vorticity field
corresponds to a maximum wind speed of 60 m s21.
This is in agreement with the maximum wind observed
in Typhoon Herb.

The wavenumber m for polygonal eyes would be
greater than 2. In this case the linear theory [(2.1a)]
predicts a phase speed that is closer to Vmax, which cor-
responds to a shorter period. This agrees qualitatively
with the period of Typhoon Herb and the period ob-
served by Muramatsu (1986). The decrease in rotation
period as the number of sides of polygon increased is
also consistent with the linear theory. More detailed
comparisons with theory cannot be made because Mur-
amatsu (1986) did not give such key information as the
maximum wind speed in the eyewall region.

The rotation of elliptical eye can also be interpreted
as a wavenumber 1 feature rotating about one focus.
However, the wavenumber 1 feature in this case is more
of finite amplitude in nature. The linear theory may not
be well applied. To avoid the arbitrariness in the inter-
pretation, we now consider a more general nonlinear
dynamical theory for the elliptical eye rotation. Con-
sider an elliptical shaped vortex patch, that is, an ellipse,

2 2x y
1 5 1, (2.2)

2 2a b

with semimajor axis a and semiminor axis b, inside of
which the vorticity has the constant value z and outside
of which the vorticity vanishes. This is the so-called
Kirchhoff elliptical vortex. It was shown by Kirchhoff
(Lamb 1932, p. 232) that this elliptical vortex region
will rotate, without change of shape, at the angular ve-
locity

ab
v 5 z . (2.3)a 2(a 1 b)

The rotation period of the Kirchhoff vortex is

22p 2p (a 1 b)
P 5 5 . (2.4)

v z aba

In the limit of a vortex with small eccentricity, (2.4)
yields the same result as the linear case of (2.1b). It can
be shown that (2.4) differs from (2.1b) by O(e2) where
e 5 (a 2 b)/a. Namely, an e of 50% will result in a
12.5% difference between (2.4) and (2.1b). With the
semimajor axis of 30 km and semiminor axis of 20 km
as in Typhoon Herb, we obtain
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2p 25 8p
P 5 ø . (2.5)

z 6 z

Thus, both the linear theory of vorticity waves and the
nonlinear theory of the Kirchhoff elliptical vortex give
virtually the same result. The theories agree well with
the observed rotation period based on the size of the
eye region and the maximum wind speed in Typhoon
Herb. The Rankine vortex structure is assumed in the
above theories. There were no aircraft observations for
Typhoon Herb. The only observations were made by
the WSR-88D radar. Unfortunately the detailed structure
of (potential) vorticity inside the eye region is not avail-
able from the very limited observations (Lee 1997).

3. Numerical results

Moist convective processes near the tropical cyclone
center continuously conspire to make high (potential)
vorticity in the eyewall. The vorticity field is continu-
ously modified by axisymmetrization (or by the damp-
ing of asymmetric kinetic energy), vorticity wave break-
ing, and vortex merging. Carr and Williams (1989) used
a nondivergent, barotropic model to identify the asym-
metry-damping influence of symmetric angular wind
shear outside the radius of maximum wind as the mech-
anism by which a barotropic vortex resists asymmetric
forcing. To substantiate the theories of the eye rotation
in the presence of axisymmetrization or vortex stabli-
zation processes, we perform nonlinear calculations
with a nondivergent barotropic model on the f plane.
The discretization of the barotropic model is based on
the Fourier–Chebyshev spectral method in space and
the fourth-order Runge–Kutta method in time (Fulton
and Schubert 1987; Kuo and Schubert 1988). The com-
putational domain is a square region that is 216 3 216
km. We employ 216 collocation points in each direction.
The wave truncation in the spectral domain ensures the
elimination of aliasing error in the quadratic nonlinear
terms. No numerical diffusion is employed in the time
integration.

We consider the following structure functions for our
numerical experiments. The first function gives a vor-
ticity profile that resembles the Rankine vortex


30 1 1 2 exp 2 exp , if r , 1;5 1 2 6[ ] r r 2 1P(r) 5 

0, otherwise,
(3.1a)

where r is a nondimensional distance. The second is the
Gaussian function

G(r) 5 exp(2r2). (3.1b)

The P(r) is an analytical approximation to the step func-
tion. The P(r) is introduced to avoid to occurrence of
the Gibbs phenomenon in the spectral model.

Our first experiment (expt. 1) involves an elliptical

Rankine-like vortex with a 0.003 s21 vorticity field and
with the scale of Typhoon Herb. The Rankine-like vor-
tex is specified according to

z(r) 5 z P(r), (3.2)0

1/22 2x 2 x y 2 y0 0r 5 1 , (3.3)1 2 1 2[ ]a b

where x0 and y0 are the center of the eye, a 5 30 km,
b 5 20 km, and z0 5 0.003 s21.

Figure 3a gives the initial vorticity profiles in the
semimajor axis direction for experiment 1 (the vorticity
unit is 1023 s21). The vorticity distribution according to
(3.1a) and (3.2) resembles the shape of a plateau. The
0.003 s21 vorticity field approximately corresponds to
a maximum wind of 60 m s21. The vorticity field outside
the elliptical vortex is zero in this experiment. Figure
4 gives the vorticity field for experiment 1 at 0 and 144
min. Only the interior square region 100 3 100 km in
the computational domain is shown. Moreover, thin fil-
aments of vorticity outside the ellipse are not contoured
in the figure for clarity. The eye remains an ellipse de-
spite the presence of the wave-breaking process. Figure
4 shows that the elliptical eye as represented by a Ran-
kine-like vortex with a 0.003 s21 vorticity field rotates
cyclonically with a period of 144 min without changing
shape. This is in agreement with both the observations
and our simple theories for the eye rotation in Typhoon
Herb. Figure 4 also demonstrates the accuracy of the
numerical model with a nearly discontinuous initial vor-
ticity field because the Kirchhoff vortex is an exact so-
lution of the vorticity equation.

Maintenance of elliptical shape is expected according
to Carr and Williams (1989). By introducing cylindrical
coordinates and decomposing the physical field into
symmetric and asymmetric components, it can be shown
that the area-averaged asymmetric kinetic energy Ea in
an annular region between radii ra and rb can be ex-
pressed as

rb]E ]va s 25 2 y u r dr, (3.4)E a a]t ]rra

where ( ) is the tangential average, vs 5 y s/r the sym-
metric angular wind, y s the symmetric tangential wind,
ua the asymmetric radial velocity, and y a the asymmetric
tangential velocity. For a Rankine vortex, vs is equal
to a constant and there can only be neutral waves with-
out damping according to (3.4). Thus, the vortex rotates
without changing its shape. A more complete analysis
that includes the full domain was carried out by Smith
and Montgomery (1995).

Our second experiment (expt. 2) involves an elliptical
vortex with a Gaussian vorticity distribution

z(r) 5 z0G(r), (3.5)

where r is defined in (3.3). The peak vorticity at the
center of the eye is taken to be 0.005 s21. The initial



1664 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 3. The initial vorticity profiles in the semimajor axis direction
for (a) expt. 1 and expt. 2, (b) expt. 3, and (c) expt. 4 and expt. 5.
The unit on the ordinate is 1023 s21.

FIG. 4. The vorticity field for expt. 1 at 0 and 144 min. A square
region 100 3 100 km in the computational domain is shown. The
contour interval is 0.00025 s21.

semimajor axis vorticity profile can also be seen in Fig.
3a. The design of the experiment does not imply that
the vorticity distribution in the eye region resembles the
Gaussian function, but rather it is designed to show that
the maintenance of the elliptical eye is crucially depen-
dent on the vorticity distribution in the eye region. The
vorticity distribution sets the dynamic background for
the presence of neutral waves and/or asymmetry-damp-
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FIG. 5. The vorticity field for expt. 2 at 0, 48, 96, and 144 min. A square region 100 3 100 km in the computational domain is shown.
The contour interval is 0.00025 s21.

ing processes. With the Gaussian structure as in (3.5),
]vs/]r is not zero, so a disturbance can either grow or
decay depending on the tilt of the waves. Figure 5 gives
the initial vortex and the numerical results in 48-min
intervals up to 144 min. It is clear from Fig. 5 that
axisymmetrization or vortex stablization processes (Me-
lander et al. 1987; Carr and Williams 1989) have pro-
duced a nearly circular vortex with surrounding fila-
ments of vorticity. Details of the axisymmetrization as
they relate to hurricane dynamics were discussed by

Carr and Williams (1989), Guinn and Schubert (1993),
Smith and Montgomery (1995), Montgomery and Kal-
lenbach (1997), and Montgomery and Enagonio (1998).
Due to the asymmetry damping, it is difficult to identify
any distinct rotation period in this experiment. These
two experiments suggest that the maintenance of an el-
liptical vortex is dependent on the vortex structure. This
is consistent with the finding of Dritschel (1998) that
the steepness of the vortex edge controls the vortex
axisymmetrization.
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FIG. 6. The vorticity field for expt. 3 at 0, 48, 72, 96, 120, and 144 min. A square region 100 3 100 km in the computational domain is
shown. The contour interval is 0.00025 s21.

Our third experiment (expt. 3) is with the initial con-
dition

z(r) 5 z P(r) 2 DzP(r ), (3.6)0 *
1/22 2x 2 x y 2 y0 0r 5 1 , (3.7)* 1 2 1 2[ ]a b* *

where a* 5 15 km, b* 5 15 km, z0 5 0.003 s21, and

Dz 5 0.002 s21, and r is computed according to (3.3).
The design of this experiment stems from the idea that
there is no significant latent heat release in the central
region of the eye. A slightly lower value of potential
vorticity may be expected prior to any potential vorticity
lateral mixing or redistribution. The vorticity profile in
the semimajor axis direction is given in Fig. 3b. This
profile gives an outer elliptic region of 0.003 s21 vor-
ticity with an inner circular region of 0.001 s21 vorticity
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FIG. 6. (Continued )

and a region of zero vorticity on the outside. With the
Rankine-like vortex structure inside the eye, the purpose
of experiment 3 is to investigate the impact on the eye
rotation of the interaction of neutral vorticity waves.

Figure 6 gives the vorticity field for experiment 3 at
0, 48, 72, 96, 120, and 144 min. It is obvious from Fig.
6 that the elliptical vortex does not rotate in 144 min.
Figure 6 indicates that there are neutral vorticity waves
that appear on both sides of the annular region of vor-
ticity. Analysis in the appendix suggests that wave-
numbers 1 and 2 are always stable despite the fact that

the necessary condition of barotropic instability is sat-
isfied. In addition, wavenumber 4 is stable with our
experiment parameters. The analysis in the appendix
suggests that the inner and outer vorticity waves should
move out of phase, with the inner waves moving more
rapidly. The figures show that wavenumber 4 is moving
out of phase with wavenumber 2, which leads to the
formation of a box-shaped vortex. It appears that waves
2 and 4 move out of phase because the nonlinear effects
can no longer hold them together. This occurs because
nonlinear solutions cannot be superposed. On the other
hand, in experiment 1 and in the Kirchhoff solution,
wavenumber 4 is locked with wavenumber 2 and all of
the higher wavenumbers. The Kirchhoff solution with
the parameters from experiment 1 is already in the non-
linear range. It is the nonlinear effects that keep all
waves moving in phase at the same phase speed. If all
of the waves moved linearly they would move out of
phase. Figures 4, 5, and 6 suggest that maintenance of
the elliptical-shaped vortex as well as the rotation period
are very sensitive to the vorticity structure inside the
eye region.

Our fourth experiment (expt. 4) is with the initial
condition

z(r) 5 z0P(r) 2 DzG(r*), (3.8)

where z0 5 0.0045 s21, Dz 5 0.002 s21, a 5 30 km,
b 5 20 km, a* 5 15 km, and b* 5 10 km. Equation
(3.8) gives a vorticity field at the center of the elliptical
eye of 0.0025 s21 and the vorticity field increases to
0.0045 s21 near the vortex edge. The size of the eye is
about the same as in Typhoon Herb. The semimajor axis
profile of vorticity is shown in Fig. 3c. Figure 7 gives
the vorticity field for experiment 4 at 0, 48, 96, and 144
min. Two filaments of vorticity outside the ellipse are
present at the end of integration. The eye remains an
ellipse and rotates cyclonically with a period of 144 min
despite the presence of the minimum vorticity structure.

Our fifth experiment (expt. 5) is with the initial con-
dition

z(r) 5 z0P(r) 2 DzP(r*) (3.9)

where z0 5 0.0045 s21, Dz 5 0.002 s21, a 5 30 km,
b 5 20 km, a* 5 15 km, and b* 5 10 km. The only
difference between experiments 5 and 4 is the interior
vorticity structure. The semimajor axis profile of vor-
ticity is shown in Fig. 3c. Figure 8 gives the vorticity
field for experiment 5 at 96 and 144 min. It is clear that
a box-shaped outer vortex forms due to the interaction
of neutral vorticity waves. The outer vortex does not
rotate with a period of 144 min.

Our last two experiments, experiments 6 and 7, are
the same as experiments 4 and 5, respectively, except
that an asymmetric vorticity field of the order 0.0015
s21 in the east quadrants of the elliptical-shaped vortex
is added. Furthermore, we have modified our z0 value
from 0.0045 to 0.005 s21 in experiments 6 and 7. The
asymmetric vorticity outside the eye may be viewed as
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FIG. 7. The vorticity field for expt. 4 at 0, 48, 96 and 144 minutes. A square region 100 3 100 km in the computational domain is
shown. The contour interval is 0.00025 s21.

coming from some random convection outside the eye.
Figure 9 gives the vorticity field for experiment 6 at 0,
48, 96, and 144 min. A region 150 3 150 km in the
computational domain is shown. Figure 9 indicates that
the neighboring vorticity is quickly elongated and
wrapped around the elliptical eye. There are also wave-
breaking and vorticity redistribution processes (e.g.,
Schubert et al. 1997; Schubert et al. 1999) associated
with the elliptical vortex. The center of the elliptical
eye translates a distance of 30 km toward the northwest.
The eye continues to be an ellipse throughout the in-

tegration. The elliptical eye also rotates with a period
of 144 min in the presence of vorticity redistribution,
vortex translation, vortex merging, and wave-breaking
processes. Figure 10 gives the vorticity field for exper-
iment 7 at 96 and 144 min. We observe the vortex has
been distorted significantly from the elliptical shape and
the rotation period is very difficult to determine.

Some of our model integrations reproduce the cy-
clonic rotation of the elliptical eye with a period of
approximately 144 min. The maintenance of an ellip-
tical-shaped vortex requires a vortcity structure that re-
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FIG. 8. Similar to Fig. 7 except for expt. 5 at 96 and 144 min.

sembles the Rankine vortex. The rotation period is sen-
sitive to the peak vorticity value. When a minimum
vorticity in the center of the eye is considered, the ro-
tation period as well as the maintenance of elliptical
shape are crucially dependent on the spatial structure of
the minimum vorticity region. The interaction of neutral
vorticity waves plays an important role in determining
the shape and the rotation period of the eye. A minimum
vorticity region inside the eye with the structure given
by (3.1a) often distorts the shape and changes the ro-
tation period of the elliptical eye. This is in agreement
with the analysis in section 2 and in the appendix.

4. Summary and concluding remarks

We have documented an elliptical eye that rotated
cyclonically with a period of approximately 144 min in
Typhoon Herb. The elliptical region had a major axis
radius of 30 km and a minor axis radius of 20 km. Two
complete periods of approximately 144 min each were
observed with the Doppler radar. We propose two the-
ories to explain the eye rotation. The linear wave theory
requires a uniform high (potential) vorticity within the
eye and zero vorticity outside. Vorticity waves propa-
gate to the left of the vorticity gradient with respect to
the mean cyclonic flow. Since the mean flow is strong
the waves still move cyclonically, but with a much lon-
ger period. The predicted period is very close to the
observed period. The fact that the linear theory predicts
a smaller rotation period for the polygonal eyes also
agrees qualitatively with the observations (Muramatsu
1986). The nonlinear theory stems from the rotation of
the Kirchhoff vortex. With the observed ellipse radii,
the Kirchhoff solution reduces to the linear wave period.
The Rankine vortex structure is assumed in the theories
and is shown to be important in the numerical experi-
ments. The key point is that the basic flow in a Rankine
vortex does support neutral wave solutions, which
makes the elliptical eye rotation possible. On the other
hand, a Rankine vortex structure for the minimum re-
gion in the center of the eye can distort the shape of
the eye and change the rotation period due to the in-
teraction of neutral vorticity waves. A fairly smooth
(such as the Gaussian function) minimum vorticity re-
gion in the eye center does not distort the eye shape
significantly. Estimations of eye rotation period from
both linear and nonlinear theories seem to agree with
the observation that an elliptical eye in a typhoon can
rotate cyclonically with a period of approximately 144
min.

Our argument, however, does not answer the question
of what causes the formation of an elliptical eye in
Typhoon Herb. The role of diabatic heating due to moist
convection has yet to be included in the theory. More-
over, the detailed potential vorticity structure in Ty-
phoon Herb is needed, but this is not possible with the
very limited observations. The potential vorticity field
in a typhoon is determined by the complex interaction
of diabatic, frictional, and advective processes. The fric-
tional convergence and moist convection continually act
to concentrate high potential vorticity in the eyewall
region. Due to the nature of convection, the potential
vorticity generated should be highly asymmetric. This
process is opposed by the asymmetry-damping mech-
anism (Carr and Williams 1989). Furthermore, there is
no latent heat release in the central region of the eye.
Large values of potential vorticity within the eye then
would not tend to occur unless they were transported
in from the eyewall region. The process of potential
vorticity inward mixing might then be related to the
asymmetric eye contraction mechanism proposed by
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FIG. 9. The vorticity field for expt. 6 at 0, 48, 96, and 144 min. A neighboring vorticity field of 0.0015 s21 is added outside the eye. A
square region 150 3 150 km in the computational domain is shown. The contour interval is 0.00025 s21.

Schubert et al. (1997) and Schubert et al. (1999). To
conserve angular momentum and/or kinetic energy dur-
ing the redistribution process, the inward potential vor-
ticity mixing must be accompanied also by some out-
ward potential vorticity mixing. The outward mixing
can be seen in the form of filaments that orbit the vortex
core. Before we can fully understand the dynamics of
eye rotation we need to know the timescale of the po-
tential vorticity modification by moist physics, the time-
scale of potential vorticity axisymmetrization and re-

distribution, and the final resultant (potential) vorticity
spatial structure. Because of the term in the po-z · =u̇
tential vorticity equation, the potential vorticity modi-
fications by diabatic heating are related to the relative
spatial distribution of cumulus convection and vorticity
within the tropical cyclone. In addition, the potential
vorticity redistribution without an azimuthal wave-
number-one component can result in a very different
macroscopic potential vorticity structure (Schubert et al.
1999). It is very likely that the adjustment timescales
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FIG. 10. The vorticity field for expt. 7 at 96 and 144 min. A neigh-
boring vorticity field of 0.0015 s21 is added outside the eye. A square
region 150 3 150 km in the computational domain is shown. The
contour interval is 0.00025 s21.

of potential vorticity by the redistribution and moist
physics modification are initial condition dependent.

With simple dynamical model calculations, our intent
is not to undermine the importance of the moist physics,
but rather to isolate the fundamental dynamics believed
responsible for the rotation of the elliptical eye in Ty-
phoon Herb. There remains the question of how the
(potential) vorticity is organized into the ‘‘right’’ struc-
ture and the ‘‘right’’ magnitude for our theory to be

valid in a moist convective environment and in the pres-
ence of potential vorticity axisymmetrization and re-
distribution in a typhoon. This may be related to the
important but unanswered question of eye dynamics.
Without detailed observations of the potential vorticity
distribution inside the eye region in Typhoon Herb, and
without a thorough understanding of the eye dynamics,
the question is difficult to answer. Simulations of Ty-
phoon Herb by high-resolution ‘‘full-physics models’’
with a good physical initialization scheme and accurate
cumulus parameterization may partially answer the
question.
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APPENDIX

Vortex Stability with Three Constant
Vorticity Regions

The original stability analysis for this problem was
carried out by Michalke and Timme (1967). Our main
goal is to determine the structure of the neutral waves.
We begin with linearized nondivergent dynamics on a
basic-state tangential flow that varies with radius

] V ] 1 dz ]c
21 ¹ c 2 5 0, (A.1)1 2]t r ]l r dr ]l

where V and z are the basic tangential wind and vor-
ticity, respectively. The boundary conditions for (A.1)
are c → 0 at r 5 0 and r → `. The basic-state vorticity
is assumed to have three constant vorticity regions. For
the basic-state vorticity defined by

z 2 Dz, 0 , r , R ,0 1d(rV)
z(r) 5 5 z , R , r , R , (A.2)0 1 2rdr 
0, R , r , `, 2

the corresponding basic-state tangential wind is

r(z 2 Dz), 0 # r # R ,0 1

2R1 1rz 2 Dz, R # r # R ,V 5 (A.3)0 1 2 r2
2R2 2 (z 2 d Dz), R # r # `,0 2r

where z0, Dz, R1, and R2 are constants and d 5 (R1/R2).
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The z0 and Dz are the vorticity jumps at R2 and R1. The
case in which we are interested has Dz . 0 and z0 .
0, that is, a ring of elevated vorticity. From (A.3) we
have

R1V 5 V(R ) 5 (z 2 Dz), (A.4a)1 1 02

R2 2V 5 V(R ) 5 (z 2 d Dz). (A.4b)2 2 02

Within each region dz /dr 5 0, so a solution to the
vorticity equation is zero disturbance vorticity every-
where except near the edge of the vorticity jumps.
Searching for model solutions of the form c 5
C(r)ei(ml2st) to the vorticity equation, where m is the
tangential wavenumber and s the complex frequency,
we obtain

2 2d C 1 dC m
1 2 C 5 0 for r ± R , R . (A.5)1 22 2dr r dr r

The two linearly independent solutions of (A.5) are C
5 rm and C 5 r2m. The general solutions in the three
regions that satisfy the limiting boundary conditions are

mAr , 0 # r # R ;1
m 2mC 5 Br 1 Dr , R # r # R ; (A.6)1 2
2mEr , R # r # `. 2

The solutions must be continuous at r 5 R1 and r 5
R2, which gives the conditions

22mA 5 B 1 DR , (A.7a)1

2mE 5 BR 1 D. (A.7b)2

To relate C at r 5 R1 and r 5 R2, we integrate (A.1)
over the narrow intervals between r 5 R1 2 e and r 5
R1 1 e and between r 5 R2 2 e and r 5 R2 1 e with
e → 0 to obtain the jump conditions

V s dC dC Dz1 2 2 2 C(R ) 5 0, (A.8a)11 2 1 2 1 2[ ]R m dr dr R1 11 2

and at r 5 R2,

V s dC dC z2 02 2 1 C(R ) 5 0. (A.8b)21 2 1 2 1 2[ ]R m dr dr R2 21 2

Now introducing the solution (A.6) into (A.8) gives

V m1 m21 2m21 m212 s [m(BR 2 DR ) 2 mAR ]1 1 11 2R1

m
m2 DzAR 5 0, (A.9a)1R1

V m2 2m21 m21 2m212 s [2mER 2 m(BR 2 DR )]2 2 21 2R2

m
2m1 z ER 5 0. (A.9b)0 2R2

If we substitute A and E from (A.7) into (A.9), we have

V m1 22m 22m2 s (22DR ) 2 Dz(B 1 DR ) 5 0,1 11 2R1

(A.10a)

V m2 2m 2m2 s (22BR ) 1 z (BR 1 D) 5 0.2 0 21 2R2

(A.10b)

Let s1 5 mV1/R1 and s2 5 mV2/R2 be the frequencies
associated with the basic flows at R1 and R2, so that
(A.10) can be written

22m2DzB 2 [2(s 2 s) 1 Dz ]R D 5 0, (A11.a)1 1

2m[22(s 2 s) 1 z ]R B 1 z D 5 0. (A11.b)2 0 2 0

For the nontrivial solutions for B and D we obtain

1
2s 2 s 1 s 1 (Dz 2 z ) s 1 s s1 2 0 1 2[ ]2

1 1
2m1 (s Dz 2 s z ) 2 Dzz (1 2 d ) 5 0. (A.12)2 1 0 02 4

The solution of (A.12) is

s 1 s Dz 2 z1 2 0 1/2s 5 1 6 S , (A.13)
2 4

where

2
s 2 s Dz 1 z Dzz2 1 0 0 2mS 5 1 2 d . (A.14)1 22 4 4

Equation (A.14) shows that instability is only possible
for Dz . 0; that is, the basic-state vorticity jumps are
of opposite sign. Moreover, one can verify from (A.14)
that S . 0 for m 5 1 and 2 despite the conditions Dz
. 0 and d ± 0. This implies that the wavenumbers 1
and 2 are always stable. Equations (A.13) and (A.14)
suggest the existence of two vorticity wave solutions
that propagate along the interphases without the influ-
ence of the other interphase [these can be found by
dropping the D term in (A.11b) and the B term in
(A.11a) separately]. Finally, for either Dz 5 0 or d →
0 one of the roots becomes the one jump solution

z0s 5 (m 2 1), (A.15)
2

which is equivalent to (2.1a).
Using the parameters Dz 5 ⅔z0 and d 5 ½ in ex-

periment 3 and with m 5 2, we have [s2, s1] 5
z0[0.37, 0.63]. Thus, we have one stable solution that
is slower than the one jump solution (s 5 z0/2) and
another that is faster. The slower solution is slower than
the one jump solution because the mean flow is slower
(the mean vorticity is less). The faster solution is as-
sociated with the inner jump and the Rossby wave is
reversed. The wavenumber 4 is stable in experiment 3.
The frequencies associated with the wavenumber 4 are
[s2, s1] 5 z0[1.02, 1.15].
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By using (A.7), we can evaluate the ratio of the
streamfunction at r 5 R1 to the value at r 5 R2:

m m 2mC(R ) R A R B 1 DR1 1 1 15 1 .
2m m 2mC(R ) R E R B 1 DR2 2 2 2

This ratio can be written in terms of the frequency
with either (A.11a) or (A.11b). For example, the ratio
from (A.11a) is

C(R ) 2(s 2 s)1 12m5 d . (A.16)
22m 22mC(R ) 2(s 2 s)d 1 Dz(1 2 d )2 1

This equation can be evaluated with either s1 or s2 to
find the relative importance of the solutions at the two
radii. For experiment 3 and m 5 2, the ratios are

C(R )1 ; 25
C(R )2

for s1 5 0.63z0 and

C(R ) 11 ; 2
C(R ) 302

for s2 5 0.37z0. This indicates that the slow solution
is about 30 times larger at R2 than at R1, while the faster
solution is 5 times larger at R1 than at R2. Also, the
solutions are out of phase at the two radii.
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