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ABSTRACT

The choice of an appropriate spectral spatial discretization is governed by considerations of accuracy and
efficiency. The purpose of this article is to discuss the boundary effects on regional spectral methods. In particular,
we consider the Chebyshev 7 and sinusoidal- or polynomial-subtracted sine—cosine expansion methods. The
Fourier and Chebyshev series are used because of the orthogonality and completeness properties and the existence
of fast transforms. The rate of convergence of expansions based on Chebyshev series depends only on the
smoothness of the function being expanded, and not on its behavior at the boundaries. The sinusoidal- or
polynomial-subtracted sine—cosine expansion Tatsumi-type methods do not, in general, possess the exponential-
convergence property. This is due to the fact that the higher derivatives of the polynomial- or sinusoidal-
subtracted function are not periodic in a model with time-dependent boundary conditions. The discontinuity
in derivatives causes the slow convergence of the expanded series (Gibbs phenomenon). When a large disturbance
is near the boundary so that derivative discontinuities in the expanded function are large, the Tatsumi-type
method causes not only erroneous numerical values in the outgoing boundary, but also spurious oscillations in
the incoming boundary region. When the wave is away from the boundary, low resolution in the Tatsumi-type
method converges exponentially, just as with the Chebyshev r method. High-resolution solutions of the Tatsumi-
type method do not, however, yield high accuracy due to the discontinuity in higher derivatives of the expanded
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function.

1. Introduction

With the advent of the fast Fourier transform (FFT)
and the spectral transform method (Orszag 1970), the
spectral method has emerged as a viable alternative to
finite-difference and finite-element methods for nu-
merical solution of atmospheric problems. This is es-
pecially true for global atmospheric modeling. There
are three areas in which spectral discretization is su-
perior to other types of discretization (with the excep-
tion of semi-Lagrangian gridpoint techniques) in global
models: 1) the spectral method eliminates pole prob-
lems; 2) the computational cost of enlarging the model
time step by the semi-implicit, implicit zonal advection
and high-wavenumber damping techniques is trivial
and with present computer capability, only the giobal
model with spectral discretization allows the physical
parameterization package (with the exception of ra-
diation) to be called every time step; 3) spectral models
have high accuracy and efficiency that comes from the
“exponential-convergence” property. The shortcoming
of global spectral models is the lack of a fast Legendre
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.transform. The O(M?3) operational counts for the Le-

gendre transform makes the spectral model inefficient
as the model resolution M (number of waves around
the earth) increases to the order of 200 for inviscid
models. At present, almost all of the operational global
models and GCMs are based on the spectral method
with spherical harmonics basis functions.

Despite the popularity of the spectral method for
global models, most of the research and operational
limited-area models are based on finite-difference or
finite-element methods. The main obstacles are the
time-dependent boundary conditions and the imple-
mentation of semi-implicit methods. Tatsumi (1986)
develops a sinusoidal-subtracted Fourier sine-cosine
series-expansion method for limited-area modeling. To
reduce the Gibbs phenomenon, a boundary relaxation
(smoothing) scheme is employed. Tatsumi argues that
the boundary smoothing is not an important part of
the method and his method can be contrasted with the
polynomial-subtracted Fourier sine-cosine series ex-
pansion that is discussed by Gottlieb and Orszag
(1977). Fulton and Schubert (1987a,b) present a sum-
mary of Chebyshev spectral methods, including dis-
cussions and demonstrations of technique implemen-
tation, accuracy, and stability. They also develop a
Chebyshev spectral shallow-water model in a limited
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domain, and it yields good results without any bound-
ary smoothing. The purpose of this paper is to study
the boundary effects on limited-area spectral methods.
In particular, we will discuss the exponential-conver-
gence property in the polynomial- or sinusoidal-sub-
tracted sine-cosine expanded methods. We will use a
simple calculation to explore situations in which de-
rivatives of an expanded function are discontinuous at
a time-dependent lateral boundary. Section 2 gives the
analysis, and in section 3 numerical results without
boundary smoothing or filtering are presented. The
summary is given in section 4.

2. Analysis of boundary effects

The formulation of a spectral method involves the
choice of the basis function and projection operator.
In other words, which series will we use to approximate
the unknown functions? The fundamental requirement
is the “‘completeness” of the series. Namely, any suit-
able smooth function can be expressed exactly as an
infinite sum of the series. The projection operators are
used to find the coefficients of the series expansion.
Three commonly used projections are Galerkin, pseu-
dospectral (collocation ), and tau.

In addition to the completeness of the basis func-
tions, the orthogonality property is central to most
practical spectral methods. Consequently, basis func-
tions are often chosen as solutions of an appropriate
Sturm-Liouville problem. To efficiently implement the
spectral method in an atmospheric model, we need
fast transforms and rapid convergence for the chosen
basis function. The fast transform cuts down the com-
putational cost of projection (finding the spectral coef-
ficients), while rapid convergence guarantees the effi-
ciency and accuracy of the spectral method. Due to
the existence of fast transforms, Fourier and Chebyshev
series are well suited for atmospheric spectral modeling.
In the following, we will present arguments that show
how the boundary conditions affect the speed of con-
vergence of various basis functions. More detailed
analyses can be found in Lanczos (1956), Gottlieb and
Orszag (1977), and Fulton and Schubert (1987a).

We consider the general Sturm-Liouville equation
in limited domain [a, b]

Lo(x) = —[p(x)¢'(x)]" + g(x)d(x)
= Aw(x)o(x), (2.1)

where primes denote differentiation with respect to x.
With suitable boundary conditions and restrictions on
functions p(x), g(x) and w(x), (2.1) has a countable
infinite set of solutions ¢(x)o corresponding to dis-
crete eigenvalues Ay_ . The eigenfunctions ¢, from
(2.1) form a complete set and are orthonormal in the
inner product

b
(61, dy)w = f 6/ (XD (X)W(x)dx = b, (2.2)
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where 6, = 1 if i = j, and 0 otherwise. Thus, any suitable
function can be expanded as

u(x) = Z ﬁn‘i’n(x),

n=0

(2.3)

where
n = (4, Onlw- (2.4)

The speed of convergence can be estimated by the
rate at which the spectral coefficient i, decreases with
increasing n. To estimate the magnitude of #,, we sub-
stitute for ¢, in (2.4) from (2.1) and integrate by parts
twice (assuming # is sufficiently smooth) to obtain

iy = Ng'(u, w7 Lop)w

= M (0, ¢n)w + B(u, 6,)]. (2.5)
Here v = w™!Lu and
B(u, ¢n)
= p(X) [t/ (x)bn(X) — u(x)dn(x)13=5. (2.6)

In the case of the Chebyshev series p(x) = (1
— x2)!/2 in the domain [—1, 1] and p(—1) = p(1)
= (, the boundary term B(u, ¢,) in (2.6) always van-
ishes for any bounded function u. Thus, integration
by parts for the A;![(v, ¢,)..] term may be repeated as
long as the function being integrated is smooth enough.
Since the term (v, ¢,,),,in (2.5) is bounded independent
of n and the eigenvalues and eigenvectors have the
asymptotic behavior A, = O(n?), ¢.(x) = O(1),
¢w(x) = O(n)as n—> oo (Courant and Hilbert 1953),
we have i, < O(n™™) if u is m times differentiable.
This is the desired property of exponential convergence.
Namely, the convergence rate of Chebyshev series de-
pends only on the smoothness of the function being
expanded. .

In the case of the Fourier series p(x) = 1 # 0, the
exponential convergence may also be obtained in the
case with periodic conditions, but only if a smooth
function u is also periodic. When u does not satisfy the
periodic condition that is common in atmospheric
limited-area models, then B(u, ¢,) = O(n) and i,
= O(n""), which yields a very slow convergence rate.
If u(a) = 0 and u(b) = 0, then B(u, ¢,) = O(1) and
i, = O(n~?). This slow (algebraic) convergence is a
reflection of the Gibbs phenomenon associated with u
not satisfying the boundary conditions satisfied by the
expansion function ¢,,.

In the Tatsumi-type method, a sinusoidal function
or polynomial is introduced to satisfy the time-depen-
dent lateral boundary conditions. After subtracting the
additional basis, the function that satisfies the homo-
geneous condition (i.e., ¥ = 0 or ¥’ = 0 at the boundary)
is used for the sine-cosine expansion and for perform-
ing the calculation as with the spectral method. This
additional basis introduced will certainly help reduce
the Gibbs phenomenon at the boundary. This proce-
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dure, however, in general cannot realize the exponen-
tial-convergence property, because the higher deriva-
tives of the function being expanded by sine-cosine
series may not be continuous at the boundary. Thus,
we expect the Gibbs phenomenon near the boundary
in the Tatsumi-type method. In the next section we
use the simple advection equation to illustrate the
point.

3. Model problem

We consider the one-dimensional linear advection
equation

du  du
E o =0 (3.1a)
in the domain [ -1, 1] with the initial condition
x + 0.5\?]
. t=0)= - s 1
u(x ) exp[ ( 02 ) | (3.1b)
and the boundary condition
—0.5 — 1\?] ~
u(—=1,t)=g(t) = exp[— (T) (3.1¢)

The analytical solution of this problem is

—_ 2
Uana(X, 1) = exp[—- (x—’%o'zi—’) ] (3.2)

This is the simplest model involving wave or advec-
tive processes. The incoming boundary condition
(3.1c) is specified according to the analytical solution
Uana(—1, 1). The analytic solution is used only at the
inflow boundary. No boundary condition is needed at
x = 1. This is an open boundary situation in the sense
that any wave should propagate out of the domain
without any difficulty. We will solve the above problem
with polynomial-subtracted (PST), sinusoidal-sub-
tracted (SST) sine-series expansion of the Tatsumi-type
method and Chebyshev r method. We will also include
the fourth-order finite-difference method (FD4 ) in our
calculations for comparison.

a. Numerical methods

If N + 1 is the number of grid points used in the
calculation, the FD4 scheme is

dlij "12j+2 + 812]'4.1 - 81:[1'_1 + lzj_z

— 4+ =0 (33

at 12Ax (3:3)
for j = N — 2. The fourth-order one-sided

difference is used for j = 0, 1, N — 1, and N points.
Here, u; denotes values at the grid points x; = —1
+jAx,(j=0 «, N), with Ax = 2/N.

For the 7 method, the dependent variable u(x, t) is
approximated by the series expansion
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N
un(x, t) = 2 (1) To(x),
n=0

(3.4)

where the T,(x) are the Chebyshev polynomials de-
fined on the interval ~1 < x < 1 by T,(x) = cos(n¢)
with x = cos¢. Let us define the Chebyshev inner
product of two functions p(x) and g(x) as

r(x)g(x ,
(p,q)= f (1( )qz()lzz dx. (3.5)
The spectral coefficient i,(#) is given by
B(0) = = (uCx, 0, Tu(x)),  (36)
C

n=90
n>0

with

With the above definition, the = equations for our
model problem are

di
24+ 4D =
dr 0
(n=0,1,+«-+-,N—1;t>0), (3.7a)
N-1
—DYiv=g(t)— 2 (=)™, (>0), (3.7b)
n=0
1n(0) = = (u(x, £ = 0), To(x))
un ch ’ ’ n
(n=0,1,+++,N;t=0), (3.7¢)
where
2 N
V== 3 mi, (3.8)
Cn m=n+1
m+nodd

denotes the spectral coefficients of the x derivative of
un. Equations (3.7a) and (3.7b) indicate that the last
mode iy is determined by the requirement that the
whole series satisfies the boundary condition. To solve
this system for the spectral coefficients i, . . . , iy using
explicit time differencing, one uses (3.7a) to predict
new values of iy, . . . , tiy—; from those at the previous
time level, then uses (3.7b) to diagnose #y. The deriv-
ative relation (3.8) yields the (backward) recurrence
formula

Cn— luﬁx )1 - 511+)1 = 2ni,
(n=12, -+, N—-1), (3.9)

with the starting values 1(vl+)1 = uj(vl) = (. Despite the
global nature of the spectral approximation, the eval-
uation of (3.8) by (3.9) allows N values of 7" to be
computed in O(N) operations. To evaluate the spectral
coefficients of an arbitrary function, discretization of
(3.6) is needed. The physical points used for a fast



DECEMBER 1992

discrete Chebyshev transform are X; = cos(jx/N) for
j=0, -+, N. These grids have irregular spacing that
are of O(1/N?) near the boundary.

The PST and SST methods employed here are the
same as those illustrated in Gottleib and Orszag (1977)
and Tatsumi (1986). The two methods differ only in
the choice of basis functions that satisfy the time-de-
pendent boundary conditions. For the PST scheme,
we seek the solutions of (3.1a)-(3.1c¢) as the sum of a
linear polynomial and a sine series

u(l, 1) —g(t)x+ u(l, 1) +g(1)
2 2

N
+ 3 .00 sin[n(fx+f)], (3.10)
=~ 272

u(x,t) =

where #(1, t) is the computed value at x = 1 by the
PST method. For the SST method, we follow Tatsumi
(1986) and seek solutions of (3.1a)-(3.1c¢) as the sum
of a time-dependent sinusoidal function and a sine se-
ries. The time-dependent sinusoidal basis is

TIME = 1.0 N= 24 METHOD 1
2.0 T T T

0.0

-2.0 S . :
-0.5 00 05 1.0

TIME = 1.5 N=24 METHOD 1
2.0 T T T

1.0 }+ E

-2.0 L L L
-1.0  -0.5 0.0 0.5

1.0
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hn(x, 1) = ﬁ_(Ll_)z‘g_(l) sin(% x)
* ﬂl_’l_)zti(t—)- (3.11)

These additional time-dependent bases are introduced
to satisfy the time-dependent lateral boundary condi-
tions and thus to allow the subtracted functions to be
expanded in sine series. Note that the subtracted func-
tion may be continuous in its function values at the
boundary, but there is no guarantee that they will be
continuous in the functions’ higher derivatives.

b. Numerical results

The fourth-order Runge-Kutta time-integration
scheme is used here, with the time step chosen to be
very small so that the errors in the computation are
dominated by spatial-discretization errors.

Figure 1 gives the numerical solutions of the model

TIME = 1.O N = 24 METHOD 4

2.0 T T —T
1.0 | -
0.0
-1.0 b
-2.0 . . 1
-1.0 -0.5 0.0 0.5 1.0
TIME = 1.5 N = 24 METHOD 4
2.0 T T -1
1.0
0.0 4
-1.0 + R
-2.0 L L .
-1.0 -0.5 0.0 0.5 1.0

FiG. 1. Numerical solutions of the model problem (3.1a)-(3.1c) with N =24 at¢t = 1.0and f = 1.5
for (a) FD4 method and (b) Chebyshev = method.
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problem (3.1a)—(3.1c) with N = 24 at ¢t = 1.0 and ¢
= 1.5 for the FD4 method and the Chebyshev r
method. The analytic solution (not shown) moves with
a constant speed and structure. The = method clearly
gives a much better approximation than does the dif-
ference method. In particular, the 7 solution does not
exhibit the computational dispersion that broadens and
introduces spurious oscillations in the FD4 solution.
Both the FD4 and 7 method let the wave go out of the
domain smoothly.

Figure 2 presents the numerical solutions of the SST
methodatsi=10,t=12,t=14,and¢t= 1.5with N
= 24, At t = 1.0, the numerical solution of SST resem-
bles the 7 solution, which is very accurate. This is in
agreement with Tatsumi’s calculation of the one-di-
mensional advection equation with a solitary wave.
Tatsumi (1986), however, uses zero boundary con-
ditions throughout the time during which the pulse
hits the boundary. This suggests that his result is a
product of his methods and the application of boundary
smoothing. To isolate the boundary effects in the Ta-
tsumi method, we do not use any boundary relaxation

TIME = 1.0 N =24 METHOD 3

2.0 T —T —T

1.0 1

-2.0 . ' '
-1.0 -05 00 05 1.0

TIME = 1.2 N = 24 METHOD 3
2-0 T 1 T

0.0 1

-1.0 } .

-2.0 : : :

-1.0 -0.5 0.0 0.5 1.0
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in our calculations even though boundary smoothing
may be a nonnegligible part of the Tatsumi method.
When the wave approaches the right boundary at ¢
=1.2,t= 1.4, and ¢ = 1.5, Gibbs phenomenon occurs
due to the large discontinuity in the function deriva-
tives. This Gibbs phenomenon not only gives erronieous
values in the outgoing boundary region, but it also gives
false oscillations in the incoming boundary region. The
PST method yields similar results, so they ar¢ not
shown here.

The corresponding root-mean-square error is shown
in Fig. 3 as a function of the number of grid points N
for £ = 1.0 and ¢ = 1.5. The algebraic convergence of
the FD4 and the exponential convergence of the 7
method are obvious. As N approaches 32, the error in
the r method is decreasing like 10 ™"/, while the finite-
difference errors are only beginning to approach their
asymptotic rate of decrease. The SST or PST methods
converge even more slowly than the FD4 method at ¢
= 1.5. This is due to the fact that the derivatives of the
polynomial- or sinusoidal-subtracted functions are not
continuous at the boundary. This discontinuity is es-

TIME = 1.4 N = 24 METHOD 3
2-0 L T

0.0 4

-2.0 . . !
-0 -05 0.0 0.5 10

TIME = 1.5 N = 24 METHOD 3
2.0 L T L

-1.0 + .

-2.0 . 1 1 1
-1.0 -0.5 0.0 0.5

1.0

FIG. 2. Numerical solutions of the model problem (3.1a)-(3.1c) with N =24 at ¢ = 1.0, ¢ = 1.2, ¢ = 1.4, and ¢ = 1.5 for SST method.
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t=10 =15
2
N =i 3
10 [~ 10 -
1 1
S 10+
10 <
[
o e
c ul
!
-3 -3
0 10
3
10 2 10
A 4
3 1 ! 1 N 1 ] ]
10 % % 32 10 8 % % 7

FiG. 3. Root-mean-square errors in the numerical solutions of the model problem (3.1) as functions of N at (a) ¢t = 1.0 and
(b) £ = 1.5. Curve 1 is the FD4 method, curve 2 the PST method, curve 3 the SST method, and curve 4 the 7 method.

pecially large when the wave approaches the right
boundary. Thus, the slow convergence rate (Gibbs
phenomenon ) distorts the solution considerably. When
the wave is away from the right boundary as at ¢ = 1.0,
the discontinuity of the expanded function’s derivatives
at the boundary is small. The SST and PST do possess
rapid convergence for N < 20. Because the equal grid
spacing used in the sine transform is smaller than the
irregular grid spacing used in the Chebyshev transform
at the center of the domain, the SST and PST methods
yield results that are better than the 7 method for N
< 20. Both the SST and the PST methods, however,
have very slow convergence rates for N > 20 again due
to the Gibbs phenomenon. In a situation when high
accuracy is desired [e.g., O(10~*) in our model prob-
lem] the efficiency of the Tatsumi-type method is
questionable.

Finally, we test the time-step stability of the above
methods. Figure 4 gives the root-mean-square error as
a function of time step for N = 16 at t = 1.0. When
the time step is small, the flat lines reflect the spatial-
discretization error of the methods for N = 16 at ¢
= 1.0. Figure 4 illustrates that the = method has a more
restricted stability constraint. This is expected from the
fact that the grid spacing is of O(1/N?).

4. Concluding remarks

Spectral models seek the solution to a differential
equation in terms of a series of known, smooth func-
tions. The basis function is often chosen from the ei-
genfunctions of the Sturm-Liouville problem for rea-
sons of orthogonality and completeness. The primary
appeal of the spectral method is the accuracy and ef-
ficiency associated with the fast transform and the rapid
convergence rate for the chosen basis functions. The
Fourier and Chebyshev series that allow fast transform
calculations are often used for spectral methods. When
the expanded function is sufficiently smooth, the Che-
byshev series possesses the exponential-convergence
property regardless of the boundary conditions im-
posed. The exponential-convergence property holds for
Fourier series only when the expanded function is
smooth and periodic.

In terms of regional spectral modeling, the Tatsumi-
type methods based on sinusoidal- or polynomial-sub-
tracted sine-cosine expansions do not, in general, pos-
sess the exponential-convergence property. The slow
convergence of the expanded series comes from the
fact that the higher derivatives of the function are not
continuous at the boundary (periodic) in a regional
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=16
=1.0
10}
[
(@]
o
C . 1
widk-
. 4
10
2
3
) 1 L 1 3 1 1 1
10 B8 7 6 5 4 3 =2
(n, 8t

F1G. 4. Root-mean-square errors in the numerical solutions of the
model problem (3.1a)—(3.1c) as functions of time step At. Curve 1
is the FD4 method, curve 2 the PST method, curve 3 the SST method,
and curve 4 the r method.

model with time-dependent lateral boundary condi-
tions. When the discontinuity is large, the Tatsumi-
type method causes the wrong computed solution in
outgoing boundary regions and false oscillations on
the incoming boundary regions due to Gibbs phenom-
enon. When the disturbance is away from the boundary
and the discontinuity is small, the method with low
resolution converges exponentially just as does the 7
method. The high-resolution solutions of the Tatsumi-
type method have a very slow convergence rate and
do not yield high accuracy accordingly. The Tatsumi-
type method is not suited for the purpose of high-ac-
curacy modeling.
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The main focus of this article is to use the simplest
model to illustrate the boundary effects in the Tatsumi-
type spectral method. We have not explored the effect
of aliasing in the transform method, or the effect of
boundary smoothing in the Tatsumi-type method.
Since we have not discussed the implementation of
efficient semi-implicit time-integration schemes in re-
gional spectral models and since the explicit time step
in the Tatsumi-type method is larger than in the 7
method, it is beyond the scope of the present work to
determine which spectral method is more suitable for
regional modeling. We will study these effects in the
future. In general, the selection of numerical methods
can be made only with knowledge of the particular
application, including accuracy requirements and so-
lution characteristics.
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