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ABSTRACT

A simple zonally symmetric balanced model of the Hadley circulation is presented. The model is based on
potential vorticity arguments and consists of a predictive equation for the potential pseudodensity and an
invertibility principle to diagnose the associated balanced wind and mass fields. When the theory is formulated
in the potential latitude coordinate, the meridional advection is implicit in the coordinate transformation, which
makes the prediction equation for potential pseudodensity analytically solvable. For convective heating patterns
that simulate the ITCZ, the model produces upper and lower tropospheric potential vorticity anomalies of
opposite sign. The associated winds are easterly at low levels and westerly aloft, except between the equator and
the ITCZ, where there are low-level westerlies and upper-level easterlies. Since the potential vorticity anomalies
develop within a background state that has potential vorticity increasing to the north, reversed poleward gradients
of potential vorticity are produced, just as has been observed in the west African region. For typical convective
heating rates, significant potential vorticity gradient reversals occur quickly—on the order of a couple of days.
According to the Charney-~Stern theorem, such zonal flows are expected to be unstable. In this sense the ITCZ
is self-destructive and should not be viewed as a strictly steady state feature of the tropical circulation. In
addition, according to this scenario, the potential vorticity dynamics of the west African region are not unique,
and we should expect a similar ITCZ formation-breakdown cycle to occur in other tropical regions such as the
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tropical east Pacific and northern Australia.

1. Introduction

In recent years there has developed an awareness
that many aspects of midlatitude balanced dynamics
can be most easily understood in terms of the advection
of Rossby-Ertel potential vorticity on isentropic sur-
faces and the determination of the associated balanced
wind and mass fields from this potential vorticity field
through the invertibility principle (Hoskins et al.
1985). The present paper extends this general potential
vorticity approach from midlatitude dynamics to the
Hadley circulation problem of tropical dynamics,
which has been studied with a variety of other tech-
niques by Schneider and Lindzen (1977), Schneider
(1977), Held and Hou ( 1980), Stevens (1983), Lind-
zen and Hou (1988), Hack et al. (1989), Hack and
Schubert (1990).

To motivate the use of potential vorticity arguments
in the study of the Hadley circulation and the ITCZ,
consider what happens when an east-west line of deep
convection forms near the equator and begins to change
the potential vorticity field due to latent heat release.
In the Northern Hemisphere such convection induces
a positive potential vorticity anomaly at low levels and
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a negative anomaly aloft. In the Southern Hemisphere
low-level negative and upper-level positive anomalies
are induced. Since the convectively induced potential
vorticity anomalies develop from an initial state which
has potential vorticity increasing toward the north, re-
versed poleward gradients of potential vorticity tend
to be produced. The regions of potential vorticity gra-
dient reversal are expected to be found on the poleward
side of the ITCZ at low levels and on the equatorward
side of the ITCZ at upper levels, just as can be seen in
the observed cross section presented by Burpee (1972)
for the west African region. This sets the stage for com-
bined barotropic-baroclinic instability, the formation
of tropical waves, and the breakdown of the ITCZ. The
use of potential vorticity arguments seems the most
direct way of understanding this process.

The outline of the paper is as follows. After intro-
ducing the zonally symmetric balanced model (section
2), we demonstrate the advantage of the simultaneous
use of potential latitude and potential temperature co-
ordinates in the potential pseudodensity equation
(section 3). Under certain assumptions on heating, this
equation can be solved analytically. Once the potential
pseudodensity is known analytically for all time, the
zonal wind and mass fields can be found by numerically
solving the nonlinear invertibility principle (section 4).
In section 5 we use this procedure to illustrate the evo-
lution of the potential pseudodensity, potential vortic-
ity, and associated wind and mass fields for ITCZs cen-
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tered on different latitudes and with different vertical
structures of apparent heat source. A basic feature of
all the results is the evolution of two regions of reversed
poleward gradient of potential vorticity—one poleward
of the ITCZ at low levels and the other equatorward
of the ITCZ at upper levels.

2. Theory of balanced zonal flow

Using the potential temperature 6 as the vertical co-
ordinate, the equations for thermally forced, inviscid,
zonally symmetric, balanced flow can be written

D
—”—(29 sin¢+utan¢)v=0, 2.1)
Dt a
. u tang oM
2Q +—=0, .
( sing + )u 299 0 (2.2)
oM
— =1 .
% , (2.3)
D¢ d(v cosp) 90
P + —_— —_— = .
Dt U(a cos¢ 0¢ + 80) 0, (24)
where
D 9 0 . 0
B‘t—'a—t v—aa¢+0£ (2.5)

is the total derivative, u and v the zonal and meridional
components of the wind, II = ¢,(p/p)* the Exner
function, M = 011 + gz the Montgomery potential, ¢
= —Jdp/ a0 the pseudodensity in f-space, and § = D6/
Dt the effect of heating. Using the definitions of IT and
g, the set (2.1)-(2.4) can be considered closed in the
unknowns u, v, p and M. However, it is not a con-
venient set for prediction since (2.1) and (2.4) cannot
be used as independent predictors. In particular, the
prediction of u by (2.1) and the prediction of ¢ by
(2.4) must be consistent with a continuous state of
hydrostatic and zonal wind balance, as required by
(2.2) and (2.3). This implies that (2.1)-(2.4) can be
combined into a diagnostic equation which can then
replace (2.1) or (2.4). To obtain this diagnostic equa-
tion, (2.4) is first written in the form

d(ov cos¢) A(ch — dp/adt) _
a cos¢ogp a6

which implies that ov = —3y/30 and o0 — dp/ot
= J(yYcosp)/(acospdp), where ¢ is a streamfunction
in the meridional plane. If the first of these is inserted
into the zonal momentum equation and the second is
multiplied by ' = dII/dp = «I1/p, we obtain

0, (2.6)

du  .du W

0t P =0 (2.7)
oIl . dIl d(y cos¢)
— +§—+I "= X
ot 6 a9 acos¢dg 0, (2.8)
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where P = {/¢ is the potential vorticity and { = 2Q
X sing — d(u cos¢)/(a cospd¢) is the absolute isen-
tropic vorticity. Equations (2.2) and (2.3) can be com-
bined into the thermal wind equation, the time deriv-
ative of which yields

d [ .0u d (oIl
%)t el 5) o
where f = 2Q sing + (2u tang)/a. Substituting from
(2.7) for du/dt and from (2.8) for 911/ d¢, (2.9) becomes

K3 (F a(y cos¢)) 4 9 (fPé‘-p-) _ oL, 6) '
adg a cos¢ oo a0 a6 ad(¢, 0)

(2.10)
If the upper and lower boundaries are considered iso-
baric and isentropic surfaces along which 6 = 0, then
¥ = 0 is the appropriate boundary condition for (2.10).
If the lower boundary is an isentropic surface along
which z = 0 and 6 = 0, then the lower boundary con-
dition on ¢ is more complicated. In any case, we can
regard (2.7) as the single predictive equation and (2.10)
as the diagnostic equation which must be solved every
time step in order to predict u by (2.7). Note that (2.10)
is elliptic in regions where fP > 0, which is generally
true except in small regions near the equator where air
has moved from one hemisphere to the other. The
variable coefficients in (2.10) introduce a basic an-
isotropy into the dynamical response of the meridional
circulation to latent heat release in the ITCZ. Because
fP is smaller on the equatorial side of the ITCZ, the
cross-equatorial branch of the Hadley circulation is
much stronger than the poleward branch, a point which
is explored in detail by Lindzen and Hou (1988) and
Hack et al. (1989).

With the view of balanced dynamics presented in
this section [i.e., with (2.7) as the predictive equation
and (2.10) as the diagnostic equation], further ana-
lytical progress becomes difficult. In the next section
we shall take an alternative approach, one in which
the predictive equation comes from the potential pseu-
dodensity principle and the diagnostic equation from
the invertibility principle. With this alternative ap-
proach, further analytical progress is possible.

(2.9)

3. Coordinate transformation and the potential pseu-
dodensity equation

The potential vorticity principle associated with the
balanced set (2.1)—(2.4) can be derived by first noting
that the equation for the absolute isentropic vorticity
takes the form

D¢
=+
Dt

o a
% adp

d(v coso)

a cos¢p -1

Eliminating the isentropic divergence between (2.4)
and (3.1) we obtain
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DP  du 96 3
o—=———+ ¢,
Dt 98 aded a9
This form of the Rossby-Ertel potential vorticity
equation will prove useful after we make a coordinate
transformation, which will simplify the total derivative
operator.

The zonal momentum equation (2.1) can also be
written in the absolute angular momentum form D(Qa
X cos?¢ + u cos¢)/Dt = 0. Since absolute angular
momentum is conserved, one might expect certain ad-
vantages in using it as a coordinate in place of ¢ (see
Shutts 1980). We follow this general approach but, in
particular, use as a new coordinate the potential latitude
® (Hack et al. 1989) defined as

(3.2)

U cos¢

in® = +( ] - -2
- (1 Qa sin’¢

1/2
) sing, (3.3a)

or inversely,

u* cos®d
Qa sin’®

where u* cos® = u cos¢. Squaring both sides of these
relations and rearranging, we obtain

Qa cos’® = Qa cos?p + ucosp,  (3.3c)

which allows us to interpret the potential latitude as
the latitude to which an air parcel must be moved
(conserving absolute angular momentum) in order for
its zonal wind component to vanish. In general there
are two such latitudes, as indicated by the plus and
minus signs in (3.3a,b). Equations (3.3a-c) relate (P,
¢, u), or, alternatively, (®, ¢, u*). If ¢ is the indepen-
dent variable and ®(¢) is known, or if ® is the inde-
pendent variable and ¢(®) is known, (3.3¢) can be
used to find u or u*. In section 4 we shall formulate a
®d-space invertibility principle in which ¢(®) is part of
the solution, so that we shall use (3.3¢) to find the
zonal wind. i

The problem of finding ®(¢) given u(¢), or of find-
ing ¢(®) given u*( ®), is somewhat more difficult since
it involves a choice of roots. To solve this problem we
first note that, since the quantities in parentheses in
(3.3a,b) must be nonnegative, we must limit our at-
tention to flows for which —Qa sin?® < u* cos® = u
cos¢ < Qasin’¢. Although westerly flows at the equator
are excluded by the preceding inequality,’ this does
not appear restrictive for our purposes, since frictionless
flows which develop by thermal forcing from an initial
state of rest are never westerly at the equator. In order
to understand which root should be chosen, consider
what happens when a narrow region of ITCZ convec-

172
sing = i(l + ) sin®, (3.3b)

! An anonymous reviewer has pointed out that the restriction u
< 0 at the equator can be circumvented by choosing a coordinate
system rotating fast enough for this to be true at all times.
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tive heating is centered near 10°N. Let us assume this
heating forces a meridional Hadley circulation that in
turn induces a zonal flow that develops from a state of
rest (in which case ® can be identified with the initial
latitude). At low levels the air north of the ITCZ is
displaced southward and the air south of the ITCZ is
displaced northward, as shown in Fig. 1a. The merid-
ional shifts on the south side of the ITCZ are larger
because the inertial stability fP is smaller there. Figure
1b depicts the associated zonal flow u cos¢ as a function
of ¢, while Fig. 1c depicts u* cos® as a function of ¥.
Four parcels of interest are denoted in Fig. 1. Parcel A
originated at —2.5°, but is presently on the equator
with an easterly zonal flow. It is the only parcel for
which the equality u* cos® = —Qa sin’® holds. For
all other parcels the inequality u* cos® > —Qa sin?®
holds. Parcel B’s northward displacement is twice as
large as its present distance from the equator, i.e., its
initial position was in the Southern Hemisphere at a
latitude equal to its present latitude in the Northern
Hemisphere. Consequently, it has no zonal velocity.
Since the sloping dashed line in Fig. 1a is the line along
which & = 0, the point C started at the equator. It
presently has a westerly zonal velocity and is the only
parcel for which the equality u cos¢ = Qa sin’¢ holds.
For all other parcels the inequality # cos¢ < Qa sin?¢
holds. Finally, parcel D is near the middie of the ITCZ
and has not experienced any meridional displacement
or any zonal acceleration. From this discussion it is
clear that all parcels between A and C are presently in
the Northern Hemisphere (i.e., ¢ > 0) but originated
in the southern hemisphere (i.e., < 0), so that the
negative root in (3.3) should be chosen. For all other
parcels the positive root should be chosen. Note that
the region between A and C consists of parcels which
originated in the southern hemisphere with P < 0.
Thus, in the region between A and C, /P < 0 and (2.10)
is nonelliptic.

As the thermally forced flow continues to evolve,
the westerlies south of the ITCZ become stronger but
narrower in meridional extent. In Fig. 1b, point A shifts
to the left, point B shifts to larger values of ¢ and point
C moves to the right along the upper branch of the Qa
sin¢ parabola. Correspondingly, in Fig. ¢ point A
moves to the left along the lower branch of the —Qa
sin?® parabola, point B shifts to more negative values
of @, and point C shifts to the right.

In the upper troposphere the meridional displace-
ments and associated zonal flows are reversed from
those in the lower troposphere. If a u cos¢ curve for
the upper troposphere were drawn in Fig. 1b, it would
touch the Qa sin?¢ parabola on its lower branch. Sim-
ilarly, if a u* cos® curve for the upper troposphere
were drawn in Fig. 1c, it would touch the — Qa sin?*®
parabola on its upper branch. Thus, in the upper tro-
posphere, the nonelliptic region would lie just south of
the physical equator (¢ < 0) but just north of the po-
tential equator ($ > 0).
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Let us now consider (®, ©, T') space, where © = 6
and T = t. The symbols © and T are introduced to
distinguish partial derivatives at fixed ¢ (/40 and 3/
dt) from partial derivatives at fixed ® (3/80 and 38/
dT). Derivatives in (¢, 0, t) space are then related to
derivatives in (®, ©, T') space by

9 9.9
3¢° 30 ot

=(6<i>6 a® 9 4 %9 9

—, = - 4
a¢ 9%’ 36 9 ae’a:aq>+ar) 3.4)
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F1G. 1. (a) Low level northward parcel displacement ¢ — & when
an ITCZ is located at ¢ = 10°N. (b) Associated zona! flow u cos¢
as a function of ¢. The u cos¢ curve satisfies u cos¢ < Qa sin’¢
except at point C, where u cos¢ = Qa sin2¢. (¢) Zonal flow u* cos®
as a function of ®. The u* cos® curve satisfies u* cos® > —Qa sin’®
except at point A, where u* cos® = — Qa sin?®, Parcel A originated
south of the equator but is presently on the equator, while parcel C
originated on the equator but is presently north of the equator. Since
parcels between A and C have carried negative P from the southern
hemisphere into the northern hemisphere, /P < 0 and (2.10) is non-
elliptic in this region. Note that the nonelliptic region lies south of
& = 0 but north of ¢ = 0.

the first of which can also be written

o __ ( 5—. ) 9 . (3.5)
cos¢adP 2Q sin® | cos PP
We limit our attention to flows in which ® is a mono-
tonically increasing function of ¢ so that {/(2Q sind)
> 0. In regions where ¢ > 2Q sin® the & coordinate
provides a natural stretching which is analogous to the
stretching provided around fronts by the geostrophic
coordinate in semigeostrophic theory (Hoskins and
Bretherton 1972). It is of interest to note that appli-
cation of (3.5) to u cos¢ leads to
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29 sing — 9(u cos¢)/(a cosdpdP)
29 sing

_ 2Q sin®
2Q sin® + d(u* cos®)/(a cosP®)’

which shows that, as —d(u* cos®)/(a cos®dP) ap-
proaches 2Q sin®, the absolute vorticity becomes much
larger than the local Coriolis parameter. From (3.4)
we can easily show that (2.5) can also be written as

D_3d .0

aT 90’
whose advantage over (2.5) is the elimination of the
divergent wind component v.

Let us now introduce as new dependent variables
the potential pseudodensity ¢* = (22 sin®)/{ and
the Bernoulli function M = M + }u?. The potential
pseudodensity o* is related to the potential vorticity P
by Po* = 29 sin® and is simply the pseudodensity a
parcel would acquire if { were changed to 2Q sin® un-
der conservation of P. With the new variables u* and
M, the balance equation (2.2) and the hydrostatic
equation (2.3) transform to

(3.6)

(u* ) = (—(29 sind

1 am\Tam oM
Qacos® ad®/ add’ 30

Formally, (3.7b) is identical to (2.3) while (3.7a) is
simpler than (2.2) in that (3.7a) allows only one u*
for a given M /9®.

Our next task is to obtain the potential pseudodensity
equation. Since ¢* is proportional to P~ the potential
pseudodensity equation can be easily obtained from
the potential vorticity equation (3.2). To begin we note
that the first and second parts of (3.4) can be combined
to vield (du/36)(d/ad¢) + $(3/38) = {(8/30), which
allows us to rewrite the right hand side of (3.2) and
obtain the potential pseudodensity equation

Dg* a0

+o* 2 =0,
b T 500

) . (3.7a,b)

(3.8)

In the absence of heating o* is conserved. However,
the upward branch of the Hadley cell is highly non-
conservative. As we shall see, a midtropospheric max-
imum in 6 leads to a decrease of ¢* in the lower tro-
posphere and an increase of ¢* in the upper tropo-
sphere. The flux form of (3.8) is particularly
convenient. With D/ Dt given by (3.6), the flux form
of (3.8) becomes

a0*  a(oti) _
aT 10

The advantage of (3.9) is that, if the source term 8 is
a known function of (¥, @, T'), then the problem of

0. (3.9)
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solving for the time evolution of ¢* has separated from
the rest of dynamics. If § is simple enough, (3.9) can
even be solved analytically, as was discussed by Schu-
bert and Alworth (1987) and Schubert et al. (1989).
Such analytic solutions of (3.9) will be further discussed
in section 5.

4. Invertibility principle

If ¢* can be determined by solving (3.9), our final
theoretical task is to determine both the wind and mass
fields from the ¢* field. This task can be accomplished
because the definition of o*, along with the gradient
and hydrostatic constraints, lead to a coupled pair of
equations which relate the known o* field to the un-
known M and sing fields. We shall refer to this pair of
equations and its associated boundary conditions as
the invertibility principle. To derive the invertibility
principle we use the transformation relations (3.4) in
the definition of ¢* to obtain the Jacobian form a(s,
p)/9(S, 0) + ¢* = 0, where s = sin¢ and .S = sin®.
Using (3.7b) we can write this Jacobian form and the
zonal balance condition as

3s *M _ ds a°M

5307 " 363596 T TN =0 (4.1a)
2 _ Q2

292a25(sl _:; ) +Q£ =0. (4.1b)

Equations (4.1a-b) constitute the desired relation be-
tween M, s and ¢*. For boundary conditions we choose

om
;6 =TIl at © = 0O, (4.1¢c)
om Q2a%(s? - §%)?
O— - M+ ———-= 0 = 05,
30 21—y 0 s
(4.1d)
=1 at S=1, (4.1¢)
s=—1 at =—1. (4.1f)

Equation (4.1c) results from assuming that the upper
isentropic surface ® = O is also an isobaric surface
with Exner function Il The lower boundary condition
results from assuming the geopotential vanishes on the
lower isentropic surface © = @p, so that M = OII there.
Then, expressing M in terms of M and s, we can write
the lower boundary condition as (4.1d). For the
boundary conditions at the poles, symmetry requires
the conditions (4.1e, ).

The diagnostic problem (4.1) involves nonlinearity
in both the interior equations and the lower boundary
condition. Because of this nonlinearity, (4.1) must be
solved using an iterative technique. Note thatin (4.1a)
the coefficient T is in fact a function of the solution
M, and should therefore be considered part of the non-
linearity that must be included in the iterative proce-
dure. In section 5 we present some solutions of (4.1),



1498

which were obtained using the procedure described in
the Appendix.

We can now summarize the results of our analysis
as follows. If the time evolution of the ¢* field can be
determined from (3.9), we can then solve the diag-
nostic problem (4.1) for M and s, after which u*, u
II and p are easily determined. This is all accomplished
in (.S, ©) space. The transformation to other represen-
tations, e.g., u( @, 8) or u(¢, p), is straightforward.

5. Solutions of the potential pseudodensity equation
and the invertibility principle for ITCZ forcing

We now turn to the problem of solving (3.9). For
simplicity let us consider the case in which 6 is inde-
pendent of time and is given by § = Q(S) sin®(xZ),
where Z = (0 — 03)/(0r — 85) and Q(.S) is the lati-
tudinal distribution of the specified heating. We post-
pone the specification of Q(.S) since only the vertical
dependence of 9 is required for our analytic result.
Multlplymg (3.9) by 8 we obtain

Ak rea 2 Y Ak =

P (00 )+ sin“(wZ) 62 (6c*) =10, (5.1)
where 7(S) = Q(S)T/(0r — O3) is the dimensionless
“convective clock” time. According to (5.1) the quan-
tity 6o* is constant along each characteristic curve de-
termined from dZ/sin?(wZ) = dr. By integration of
this equation we can show that the characteristic
through the point (Z, 7) intersects the 7 = 0 axis at a
level Zy(Z, 7) determined by 7Zy(Z, 7) = cot™[nxr
+ cot(xZ)]. Since fc* is constant along each char-
acteristic, its value at (Z, 7) must equal its value at
(Zo(Z, 1), 0), which results in

oMZ, 1) = eMZo(Z, 7), 0)
« sin?{cot~'[x1 + cot(7wZ)]}
sin®(xZ)

Although (5.2a) is indeterminant at the boundaries Z
= 0 and Z = 1, use of ’'Hopital’s rule twice yields

oXZ,7)=%Zo(Z,7),0) at Z=0,1. (52b)

Since Zy(Z, 7)) > 0as Z = 0and Zy(Z,7) > 1 as
Z — 1, the solution (5.2) constitutes an internal po-
tential pseudodensity anomaly, i.e., a ¢* field which is
unmodified at the upper and lower boundaries. The
reason for this can be seen by referring back to (3.8)
or (3.9) and noting that, for our specified @ field, both
6 and 88/9O vanish at the boundaries. For most of the
results presented here we have specified the initial ¢*
to be a constant, i.e., ¢*(Z, 0) = g9, which implies an
initial state with no zonal flow.

Equations (5.2) constitute the analytic solution of
the potential pseudodensity equation when the diabatic
source has the sin?(«Z ) form. The complete solution
a*( .S, O, T') can be plotted once Q(S), and hence 7(S),
1s specified. Since the 7 clock runs faster where Q(S)

(5.2a)
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is large, the largest anomalies in the ¢* field will occur
in the ITCZ.

For the latitudinal distribution of the heating we now
choose the particular form

O(S) = Qdar 2 {erf[af1 + S,)]

+erfla(l — S.)1} ' exp[—a?(S — S.)°].  (5.3)

By varying the parameters S, and « we can consider
simulated ITCZs centered at different latitudes and
with different widths. By integration of (5.3) from
the south pole to the north pole we can show that
1 [ Q(8)dS = Qy, so that different values of S, and «
all result in the same area averaged heating Q,. For
the results shown here we have chosen a = 15 and
either S, = sin(10°) =~ 0.174 or S, = sin(15°) =~ 0.259.
These can be interpreted as rather narrow ITCZs with
approximately 85% of their rainfall occurring between
6°N and 14°N for the S, = sin(10°) case or between
11°N and 19°N for the S, = sin(15°) case. Because
of the way the product Q(S) T appears in the definition
of 7(.S), it is not really necessary to choose Qy; rather,
the solution can simply be obtained for different values
of QoT. However, for purposes of physical interpre-
tation let us choose Qp = 0.30 K day ™!, along with 0
= 360 K and 0z = 300 K. Then, the peak heating is
Q(S,) ~ 5.1 K day™' and T = 3, 6 days correspond
10 Qo7 = 0.9, 1.8 K, or 7(S,) =~ 0.26, 0.51.

For the case of an ITCZ at 10°N the fields of o*( ¢,
d), P(¢, ), u(¢, 6) and p(¢, ) at 3 and 6 days are
shown in Figs. 2 and 3. The ¢* field has been nor-
malized by oy = 1.458 kPa K™ and the P field by 2Q/
a¢. In the ITCZ a region of small potential pseudoden-
sity develops at lower levels and a region of large po-
tential pseudodensity at upper levels. Due to vertical
advection in the ITCZ, the lower tropospheric mini-
mum in ¢* begins to form an indentation on the upper
tropospheric maximum in ¢*, This same process occurs
in a more extreme form in the development of a trop-
ical cyclone (Schubert and Alworth 1987). The solu-
tion of the invertibility principle results in low level
zonal flows, which are easterly except in a band that
runs between a latitude just north of the equator and
a latitude near the center of the ITCZ. At upper levels
the zonal flow is westerly except in a band that runs
between a latitude just south of the equator and a lat-
itude near the center of the ITCZ. As the ¢* and P
anomalies become larger, the associated zonal flows
also become larger. The isolines of pressure in the bot-
tom panels of Figs. 2 and 3 reveal only small adjust-
ments in the mass field, with a slight stabilization at
lower levels in the ITCZ and a slight destabilization
aloft.

Perhaps the most striking result seen in Figs. 2 and
3 is that a narrow potential pseudodensity or potential
vorticity anomaly produced in just a few days by con-
vection in the ITCZ can result in significant zonal winds
throughout the entire tropical and subtropical region.
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This result is related to the meridional parcel displace-
ments forced by the convection. Since & is a conser-
vative quantity and 6 is known, and since the actual
latitude ¢( P, ©) is part of the solution of the invertibility
problem, meridional parcel displacements or trajec-
tories are easy to construct. Two sets of such trajectories
from the initial time to 3 days and from 3 to 6 days
are shown in Fig. 4, along with the 6 field. Away from
the ITCZ, # = 0 and parcel trajectories are along is-
entropic surfaces. In a lower tropospheric layer
bounded by two isentropes, mass is removed in the
ITCZ, and there is a shift in parcel positions toward
the ITCZ. The largest shifts are on the cross-equatorial
side, because fP is smallest there. Corresponding shifts
away from the ITCZ occur in an upper tropospheric
layer bounded by two isentropes. As the heating pro-
ceeds, fP becomes larger in the lower troposphere near
the ITCZ. This increasing resistance to motion along
isentropic surfaces, coupled with the fixed 4 field, causes
the depth of the ITCZ inflow to deepen with time.

The anisotropic response or enhancement of the
cross-equatorial Hadley cell has interesting effects on
the potential vorticity field. To see this, consider the
—0.1 and the 0.4 potential vorticity lines in Figs. 2 and
3. These P lines mark chains of fluid parcels beginning
approximately equal distances from the ITCZ. At 6
days the —0.1 line is more distorted than the 0.4 line.
This is a direct result of the fact that the meridional
circulation associated with the cross-equatorial Hadley
cell is more intense than the meridional circulation
associated with the Hadley cell north of the ITCZ. The
P = 0 curve marks the chain of fluid particles which
started at rest on the equator. Regardless of the hemi-
sphere into which these particles move, they must ac-
quire a westerly flow, since they move closer to the axis
of the earth’s rotation. Thus, the P = 0 line bends more
than the ¥ = 0 line, so that it lies in the lower tropo-
spheric westerlies north of the equator and the upper
tropospheric westerlies south of the equator.

The convective modification of the P field occurs
within a background state that has a northward increase
of P. As convection continues, the gradient of P be-
comes locally reversed in the lower troposphere pole-
ward of the ITCZ and in the upper troposphere equa-
torward of the ITCZ. These regions of reversed isen-
tropic poleward gradient of potential vorticity are
indicated by stippling in Figs. 2 and 3. Such features
develop quickly and are consistent with observations
made by Burpee (1972) and Reed et al. (1977) in their
studies of the origins of easterly waves in the lower
troposphere of the north African region. According to
Charney and Stern (1962), Eliassen (1983) and Shep-
herd (1989), such zonal flows (i.e., those with a reversal
in the meridional gradient of the potential vorticity)
satisfy the necessary condition for combined barotro-
pic-baroclinic instability. Thus, it would appear that
ITCZ convection alone can lead to the generation of
unstable zonal flows. This may be the cause of periodic
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breakdowns of the ITCZ. The precise role of the upper-
level potential vorticity gradient reversal remains in-
triguing and is complicated by the fact that it can come
into close proximity with the inertially unstable (Ste-
vens 1983) region where fP < 0. Is it possible that at
upper levels on the equatorward side of the ITCZ there
are generated waves which take the form of equatorially
trapped modes propagating into the stratosphere and
playing a role in the QBO?

Results at 6 days for an ITCZ located at 15°N are
shown in Fig. 5. Comparing Fig. 5 with Fig. 3 we note
that, except for the latitudinal shift, the o* ficlds are
essentially identical. However, the potential vorticity,
zonal wind and mass fields are different, with the ITCZ
at 15°N producing a potential vorticity anomaly,
neighboring zonal winds and isobaric surface deviations
considerably larger than those produced by the ITCZ
at 10°N. These differences can be interpreted as follows.
Since Do*/ Dt = — ¢* 30/00 and the initial ¢* is con-
stant, the time evolution of ¢* for ITCZs at different
latitudes is essentially identical except for the meridi-
onal shift. Since DP/Dt = P38/90© and the initial P
increases to the north, the material rate of change of
P is larger for an ITCZ at 15°N. An alternate inter-
pretation is that, since P = (22 sin®)/ o*, identical ¢*
anomalies shifted from 10°N to 15°N result in P
anomalies which are approximately 50% larger for the
ITCZ at 15°N.

All results shown so far have an apparent heat source
with sin?(#Z ) vertical structure, which leads to internal
potential vorticity anomalies. Figure 6 shows results at
6 days for an ITCZ at 10°N when the apparent heat
source has a sin(wZ) vertical structure. In this case
86/00 does not vanish at the top and bottom bound-
aries, and the extrema in ¢*, P and u occur on the
boundaries. It is debatable which vertical profile of ap-
parent heat source is more realistic. Most diagnostic
studies (e.g., Yanai et al. 1973, Fig. 10) would tend to
favor the sin(xZ) case in the lower troposphere and
the sin?(xZ ) case in the upper troposphere. However,
in some physical situations where stratiform precipi-
tation plays an important role, both of the vertical pro-
files used here would need significant modification. For
example, the apparent heat source in a region of strat-
iform precipitation is characterized by heating due to
net condensation at upper levels and cooling due to
evaporation at lower levels. The corresponding
98/00 then leads to a midtropospheric maximum in
potential vorticity (Hertenstein and Schubert 1991).

The results shown in Figs. 2-6 were all obtained
with a constant initial ¢*. For comparison with obser-
vations let us now consider an initial ¢* that depends
on 6 but not ¢. This represents an initial condition
with no zonal flow and with a mean tropical temper-
ature profile. The mean temperature profile is taken
from the GATE mean sounding (Fulton and Schubert
1985, Table 4). Beginning with this initial o*, we obtain
the results shown in Fig. 7 at 7' = 6 days. The results
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are qualitatively similar to those presented previously,
but the potential pseudodensity and potential vorticity
anomalies occur in a more realistic background state
which includes low values of ¢* and high values of P
in the stratosphere. The top panel in Fig. 8 shows an
expanded, Northern Hemisphere view of the potential
vorticity for the same experiment at 7 = 3 days. The
bottom panel in Fig. 8 is an isentropic coordinate ad-
aptation of Burpee’s (1972) August mean cross section
of potential vorticity at 5°E. During August the ITCZ
rainfall maximum stretches across Africa at approxi-
mately 11°N (Burpee 1972, Fig. 2). Thus, both the
observations and the model show two regions of re-
versed potential vorticity gradient, one poleward of the
ITCZ at low levels and one equatorward of the ITCZ
at upper levels. In a further analysis of the character-
istics of North African easterly waves during the sum-
mers of 1968 and 1969, Burpee (1974, Figs. 7 and 8)
showed that the maximum amplitude of the surface
meridional wind and surface pressure oscillations occur
at approximately 18°N, i.e., near the northern edge of
the region of reversed potential vorticity gradient. From
the model simulations it is clear that the instability of
the lower tropospheric easterly jet can be explained by
ITCZ convection alone; there is no need to invoke sur-
face heating in the Saharan region. Once this is ac-
cepted, there is no reason to regard the African region
as particularly unique, and we should expect this same
instability and breakdown of the easterly jet in all re-
gions with a well-defined ITCZ.

6. Concluding remarks

In the preceding analysis we have made extensive
use of the concepts of potential vorticity and potential
pseudodensity. This raises the question of whether one
of these variables is preferable to the other. We believe
the answer to this question depends on the context of
the discussion. For example, let us consider the prob-
lem of how to define the tropopause. Operational def-
initions of the tropopause often involve criteria based
on abrupt changes of lapse rate. Dynamicists, especially
those concerned with tropopause folding, often prefer
criteria based on abrupt changes of potential vorticity.
The potential vorticity approach, while more dynam-
ically justifiable than the lapse rate approach, fails in
tropical regions, as can be seen from the difficulty in-
volved in defining a tropopause near the equator based
on the potential vorticity field shown in the upper right
panel of Fig. 7. However, the potential pseudodensity
field shown in the upper left panel of Fig. 7 has a be-
havior that allows it to serve as the basis of a dynamical
definition of the tropopause at all latitudes. In other
discussions, such as those involving combined baro-
tropic-baroclinic instability, potential vorticity may be
preferable. Thus, it may be useful to regard potential
vorticity and potential pseudodensity as dual variables,
with the preference of one over the other depending
on what aspect of the dynamics is being discussed.
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An alternate interpretation of the potential vorticity
dynamics occurring in convective situations has re-
cently been provided by Haynes and McIntyre (1987,
1990). It is based on rewriting (3.2) as

d(aP) + 0
at a cosogp

. ou
an—()ae)cosd;] =(,

(6.1)

and regarding P as the mixing ratio of a notional po-
tential vorticity substance (PVS), i.e., P = PVS/mass
or P = PVS/volume of (¢, #)-space. According to
(6.1) the total advective and nonadvective flux (aPv
— 60u/ab) is along the isentrope, and an isentropic
surface is semipermeable in the sense that it is per-
meable to mass but impermeable to potential vorticity.
Multiplying (6.1) by a cos¢ and integrating from pole
to pole and over some layer bounded by two isentropic
surfaces, we obtain [ [ Poa cos¢dpdt = 0, which states
that the total potential vorticity substance in this layer
is always zero. In a certain sense, the positive potential
vorticity in the Northern Hemisphere cancels the neg-
ative potential vorticity in the Southern Hemisphere,
although, of course, the zero potential vorticity line is
not always exactly at the equator. According to the
Haynes-Mclntyre interpretation, the impermeability
of isentropic surfaces to potential vorticity, coupled
with the withdrawal of mass from the lower isentropic
layers causes concentration of potential vorticity there,
while the addition of mass to the upper isentropic layers
causes dilution of potential vorticity there.

There are several ways to extend the analysis pre-
sented here. One obvious possibility is to include the
effects of friction in (2.1). Then, (3.9) includes the
additional term d(¢*® cos®)/(cos®dP), and it be-
comes possible to investigate flows which are thermally
and frictionally controlled, including steady state flows
that are produced when the vector (o*® cos®,
a*0 cos®) is nondivergent in the (P, @) plane. A second
extension of the present analysis becomes apparent by
noting that, although the 4 field chosen in section 5
simulates the apparent heat source associated with the
ITCZ, it neglects the apparent heat source associated
with trade cumulus convection (Nitta and Esbensen
1974). This additional heat source tends to produce a
low potential pseudodensity trade inversion layer with
a high potential pseudodensity region below it. Since
warmer sea-surface temperatures lead to deeper trade
cumuli, the increase in sea-surface temperature toward
the ITCZ should cause this potential pseudodensity
couplet to slope upward toward the ITCZ. By the in-
vertibility principle, variations in potential pseudo-
density along isentropic surfaces induce zonal flows.
Thus, shallow convection may be important for two
reasons—the moistening of low-level air flowing toward
the ITCZ and the production of zonal flow associated
with the sloping potential pseudodensity couplet. So-
lutions resulting from trade cumulus forcing might help
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us better understand the importance of the parame-
terization of shallow convection in general circulation
models.

Since we have bypassed the parameterization of
moist physical processes, we cannot claim to have de-
veloped a closed theory of the Hadley circulation.
However, even though the present work and the work
of Thorpe (1985, 1986), Schubert and Alworth (1987),
and Schubert et al. (1989) do not constitute closed
theories, their value may be that they force us to take
a somewhat different view of convectively driven cir-
culations, with primary attention focused on the po-
tential pseudodensity or potential vorticity fields. Since
this is precisely the view often taken in midlatitude
baroclinic wave and frontogenesis studies using semi-
geostrophic theory, we have moved closer to the goal
of a unified dynamical framework for the study of
midlatitude and tropical phenomena. A natural exten-
sion of the present work would be a fully three-dimen-
sional theory that has (3.9) and (4.1) as a special two-
dimensional case. Steps in this direction have recently
been taken by Shutts (1989) and Magnusdottir and
Schubert (1990, 1991) using three-dimensional gen-
eralizations of semigeostrophic theory with a variable

Coriolis parameter and by Stevens et al. (1990) using
the long-wave approximation.
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APPENDIX

Numerical Methods for Solution of
the Invertibility Principle

We wish to use an iterative technique to solve the
discretized version of (4.1). Because of the anisotropy
associated with the variable Coriolis parameter, the ap-
proach here is somewhat different than that of Fulton
(1989) for a related f~plane invertibility problem. In
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particular, we do not use point relaxation but rather a
more efficient procedure based on Newton’s method
and line relaxation (Fulton et al. 1986).

Using the same nondimensional vertical coordinate
Z introduced in section 5, and nondimensionalizing
M by ¢* = aR(Or — Op), o* by g0 = (ps — pr)/(Or
— 0g), I' by I'o = R/pp, Il by ¢,, and p by pg, the
invertibility relation (4.1) becomes
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where I' = IV I = xadM/3Z, ¢ = 4Q%a?/c?
(Lamb’s parameter), a« = (pz — pr)/ps and 8 = 0/
(07 — 0p). Note that we have retained the same sym-
bols for nondimensional quantities. For the results
presented in this paper we have used @ = 7.292 X 107
rads™!, a=6371km, R =287 J kg™ K~!, @5 = 300
K,07r=360K, pg = po = 100 kPa and pr = 12.5 kPa,
so that ¢ = 122.7 m s ! and ¢ = 57.3.

In order to discretize the invertibility principle (A.1),

2
35 @M eSs(1 = S?) (iS_)" +To* =0, (A.la) Consider the grid defined by S; = jAS (j = —J, —J
aS 872 (1 —-152)? \oz ’ +1, -+, Hwith AS = 1/Jand Z; = kAZ (k = —1,
0, -+, K+ 1)with AZ = 1/K. Let us define M at
eS (52~ S? om o : .
e ( > ) +—==0, (A.1b) all even j points and s at all odd j points. By choosing
2\1-s as J odd, the poles S = x1 are s points at which the
while the boundary conditions become gce)flillr:;iary conditions (A.le, f) are imposed. We now
om o
O 1« - M, ifjeven
K = (Il—a) at Z=1, (A.lc) Xk = ik . f (A2)
Sk, 1f jodd,
oM € (s — §%)? . . .
B 9z M+ 3 152 =0 at Z=0, (A.1d) and use standard centered differences to discretize
s (A.la) at the M points and (A.1b) at the s points.
s=1 at S=1, (A.1e) Then the discrete versions of (A.1a,b) are
s=—-1 at S=-1, (A.1f) Gix =0, (A.3a)
where
Gix = Tjxo R2AS(AZ)? + (X1 p — Xjo1x) (Xt — 2Xj4 + Xjpo1)
eASSH1 = §) a1k + %10 [ 1 ’
[11_ %(inl,k +ij—l,k)2j]2 2 ks X psr = X1 = Xjo1k-1)
for j even, . ‘
2 _ g2 the values of x on surrounding rows fixed, we wish to
Gy = E(ﬁ"__2f_) S;AS + Xj1x — X1k simultaneously update the entire row of x’s so that
| 1 = xjx ’ ’ (A.3a) is satisfied for the entire row. Then, omitting

for j odd, Tjx = IZ"*, and I = xa(Mi
— M;x-1)/(2AZ). The boundary conditions are

20Z(1 — a)*

Xjk+1 = Xjxk-1 + ————,  (A.3b)
KX
2AZ eAZ
Xt =% =~ X0+ gg
2 Q2 \2 2 0~ S%4.)?
v [(x,-.,o 2S;—l) (Xj10 ZSJ“) , (A.3c)
1—x2, 1 — Xjr10
— (A.3d)
X gk = -1, (A.3e)

The interior equations (A.3a) are applied for j = —J
+1,+-+,J—1landk=0,1, - - «, K, and the bound-
ary conditions (A.3b—c) use centered differences with
ghost points at k = —1 and & = K + 1. For the results
presented here we have chosen J = 81 and K = 40.
Suppose we have an estimate of x on a row of interior
points j = —J + 1, -+ -, J — 1 and on surrounding
rows, but this estimate does not satisfy (A.3). Holding

the subscript k, we have 2J — 1 nonlinear equations
G; = 0, which can be written in the vector form G(x)
= (), where x is a vector consisting of the 2./ — 1 values
of x;. Newton’s method for this system is

F(x — xM) 4+ G(xO) =0,  (A4)

where & is the Jacobian matrix of the system. In par-
ticular & is a tridiagonal matrix whose j, j’ entry is &, ;-
= 0G;/0x;.. Zebra relaxation is used to update x by
(A.4) at all interior lines. One sweep of zebra relaxation
consists of: first, simultaneously solving the tridiagonal
systems for all white (even) lines with new values of
the unknown replacing the old ones; then using these
updated values, the same procedure is repeated for all
black (odd) lines. After updating all interior points,
the ghost points are updated using (A.3b~c). This linear
relaxation procedure on a single grid is not particularly
efficient since smooth error components are slow to be
eliminated. However, it could be optimized by incor-
poration into a multigrid procedure such as that de-
scribed by Fulton (1989) for the f~plane invertibility
problem. Even though several hundred sweeps are re-
quired to obtain satisfactory convergence, each solution
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shown here was obtained in about ten minutes on a
SUN Sparcstation 1.
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