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s u m m a r y

This paper improves the typhoon flood forecasting over a watershed in a mountainous island of Taiwan.
In the presence of the stiff topography in Taiwan, the typhoon rainfall is often phased-locked with terrain
and the typhoon rainfall in general is best predicted by the typhoon rainfall climate model (TRCM) (Lee
et al., 2006). However, the TRCM often underestimates the rainfall amount in cases of slowing moving
storms with strong southwest monsoon supply of water vapor flux. We apply an artificial neural network
(ANN) based southwest monsoon rainfall enhancement (AME) to improve TRCM rainfall forecasting for
the Tsengwen Reservoir watershed in the southwestern Taiwan where maximum typhoon rainfall fre-
quently occurred. Six typhoon cases with significant southwest monsoon water vapor flux are used for
the test cases. The precipitations of seven rain gauge stations in the watershed and the southwest mon-
soon water vapor flux are analyzed to get the spatial distribution of the effective water vapor flux thresh-
old, and the threshold is further used to build the AME model. The results indicate that the flux threshold
is related to the topographic lifting of the moist air, with lower threshold in the upstream high altitude
stations in the watershed. The lower flux threshold allows a larger rainfall amount with AME. We also
incorporated the rainfall prediction with a state space neural network (SSNN) to simulate rainfall-runoff
processes. Our improved method is robust and produces better flood predictions of total rainfall and mul-
tiple rainfall peaks. The runoff processes in the watershed are improved in terms of coefficient of effi-
ciency, peak discharge, and total volume.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

There are three to five typhoons each year influencing Taiwan
with torrential rainfall. Flood forecasting is one of the critical issues
of reservoir operations, especially for those reservoirs built in
watershed with stiff topography. The stream in the mountainous
watershed is rapid and the time of concentration is approximately
3–5 h. The very short concentrated time pose serious challenges for
flood forecasting and reservoir operation during typhoon landfall
periods. The Taiwan typhoon rainfall is often phased-locked with
the Central Mountain Range, with maximum rainfall often occur-
ring on the windward side of the topography. Thus knowing the
position of typhoon allows the forecasting of a precipitation
pattern and the amount of rainfall from the typhoon climatology
history. The quantitative typhoon rainfall prediction in Taiwan is
often used with a statistical approach based on the relation be-
tween the observed rainfall pattern and the tracks of typhoon in
the climatology model (e.g., Lee et al., 2006; the Typhoon Rainfall
Climate Model, TRCM). The TRCM used 371 stations over Taiwan
during 1989–2001. The model often gives reasonable precipitation
estimates on each rain gauge station for 24–36 h time scale by a gi-
ven typical cyclone center.

Typhoon Morakot 2009, with significant southwest monsoon
flow, produced a record-breaking rainfall of 2361 mm in time spans
of 48 h in the upstream of the Tsengwen Reservoir watershed (Ali-
shan station). The extreme rainfall event is caused by the very slow
moving of Typhoon Morakot and also the significant southwest
monsoon water vapor supply (Chien and Kuo, 2011). The impor-
tance of the monsoon flow water vapor supply for the typhoon hea-
vy rainfall is recognized in many of the recent studies (Chien et al.,
2008; Lee et al., 2008; Ge et al., 2010; Hong et al., 2010). Because
TRCM is based on the typhoon climatology of all scenarios, it may
underestimate the typhoon rainfall in the presence of strong
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southwest monsoon flow. The southwest monsoon flow is a large
scale meteorological feature that is well observed, thus it is possible
to improve the typhoon flood forecasting with monsoon flow water
vapor enhancement over a watershed.

The artificial neural network (ANN) algorithm is useful in
rainfall forecasting, as the algorithm is flexible and data-driven
learning in building model without prior assumptions concerning
the data distribution and also takes into account the nature of
nonlinearity (Gardner and Dorling, 1998). In order to achieve an
accurate rainfall forecasting, many meteorological factors are se-
lected as the inputs, including past observed rainfall, typhoon’s
characteristics, and satellite data (French et al., 1992; Olsson
et al., 2004; Lin and Chen, 2005; Lin et al., 2009; Hsu et al., 1997;
Bellerby et al., 2000; Hong et al., 2004; Chen et al., 2008).

The ANN approach is also useful in the rainfall-runoff processes
(Whitley and Hromadka, 1999; Anctil et al., 2005; Chang and Chen,
2003; Cigizoglu, 2005; Hu et al., 2005; Imrie et al., 2000; Wang
et al., 2009; Deka and Chandramouli, 2005; Lange, 1999; El-Shafie
and El-Manadely, 2011). In these studies, the feedforward neural
network (FNN) is adopted to perform rainfall-runoff processes.
There may be some limitations of model calibration and simulation
for a dynamical system, including using an inefficient process of
trial and error to determine the optimum structure with appropri-
ate number and configuration of its neurons in hidden layers (Imrie
et al., 2000) and no dynamics involved due to the static structure of
FNN (Chiang et al., 2004). This deficiency in flood forecasting may
be remedied by a state space neural network (SSNN) with dynam-
ics (Pan and Wang, 2004). Furthermore, Pan et al. (2007) demon-
strated that DLRNN (one type of SSNNs) only needs the current
rainfall as the input to get a satisfactory hydrograph while an
FNN, which has the same input and number of weights as the
DLRNN, performs rainfall-runoff processes poorly.

Pan et al. (2011) used an ANN-based southwest monsoon
rainfall enhancement (AME) to improve TRCM rainfall forecasting
for two mountain stations Alishan and Yushan with cumulative
rainfall over 400 mm. Their result suggested that AME improves
TRCM rainfall predictions significantly in both mountain stations.
In this paper, we update the database of TRCM to include recent
typhoons with strong southwest monsoons. We extend the previ-
ous work to investigate the impacts of the southwest monsoon
on typhoon rainfalls in the Tsengwen Reservoir watershed by
TRCM with AME. The rainfall-runoff processes are simulated with
the SSNN from the improved TRCM rainfall predictions. Based on
the SSNN, a short term rainfall-runoff forecasting for direct runoff
of time t + 1 � t + 3 could be performed from the observed rainfall
and an experiential phi index of time t for operational flood fore-
casting work (Pan and Wang, 2004). Therefore, the forecasting is
performed in this study because the hydrological responses of time
t + 1 � t + 3 are carried out based on the observed rainfall of time t
and more rainfall predictions of time t + 1 � t + 3 via TRCM with
AME. Consequently, we evaluate the performance of hydrological
models for 1–3 h ahead flood forecasting. The descriptions of
methods and data are in Section 2. The results and conclusions
are in Sections 3 and 4, respectively.
2. Methods and data

2.1. Study area and European Centre for Medium-Range Weather
Forecasts-Tropical Ocean Global Atmosphere (CMWF-TOGA) data

We select the Tsengwen Reservoir watershed as our study area.
Located in southern Taiwan, the Tsengwen Reservoir watershed is
on the upstream of the Tsengwen creek with an area of 481 km2, a
mean annual precipitation of 2700 mm approximately, and a mean
annual stream flow of 29.0 m3 s�1. The elevation of the watershed
ranges from 232.5 m to 2609.0 m and average slope is 54.4%. The
Tsengwen Reservoir is located in the downstream of the watershed
elevated at 133 m altitude. The topography, location of hydrologi-
cal and rain gauge stations in the Tsengwen Reservoir watershed is
shown in Fig. 1(a). The geographic orientation of the Tsengwen
Reservoir watershed implies favorable condition for heavy precip-
itation, especially in the west half (windward side in general) of the
watershed, where most of the rain gauge stations and the hydro-
logical station are located. The stations are in the northeastern–
southwestern orientation with the highest station Alishan
(2413 m) and the lowest station Tsengwen (207 m).

To quantify the southwest monsoon water vapor flux (SWFlux),
we use six hourly (at 0000, 0600, 1200 and 1800 Coordinated Uni-
versal Time (UTC)) advanced gridded operational analyses from
European Centre for Medium-Range Weather Forecasts-Tropical
Ocean Global Atmosphere (ECMWF-TOGA) with 1.125� � 1.125�
resolution on 925 h Pa. We compute the SWFlux at each grid with
the total wind and the specific humidity. Fig. 2 shows the differ-
ences of 925 h Pa wind speed and SWFlux between the six ty-
phoons during the post-landfall period and the averaged pattern
calculated from June to August during 2004 to 2009. Fig. 2 illus-
trates significant SWFlux for these typhoon cases, and the SWFlux
provides the needed water vapor for post-landfall extreme rainfall.
Although the SWFlux of Typhoon Kalmaegi is the weakest, but it is
still stronger than climatology. The green rectangular region
(16.875–22.5�N, 110.25–120.375�E with totally 60 grids near Tai-
wan) in Fig. 2 is used for detecting the SWFlux (Pan et al., 2011).
The averaged SWFlux in the green region is computed as equation

Flux ¼
P60

i¼1ðu2
i þ v2

i Þ
1=2 � qi

60
ð1Þ

where qi is the specific humidity of the ith grid, and ui and vi are
zonal and meridional velocity (m s�1) of the ith grid, respectively.
With southwesterly flow in mind, the Flux is calculated only when
u > 0 and v > 0. Because the water vapor flux is estimated from
ECMWF wind field and humidity field, the major possible errors
are come from temporal and spatial resolution and the lack of the
observed data over ocean. The temporal and spatial resolutions
are 6 h and 1.125�, respectively. On the other hand, the data sets
are based on quantities analysis or computed within the ECMWF
data assimilation scheme. This method has reduced the error of
few observed ocean data because satellite data has included.
2.2. Typhoon rainfall climate model (TRCM) and typhoon cases

Lee et al. (2006) developed the TRCM, which used 371 stations
during 1989–2001. The domain of TRCM is confined from 19�N to
27�N and from 118�E to 126�E, which is divided by 256 sub grids
(0.5� � 0.5�). The TRCM model comprises of a set of rainfall clima-
tology maps, which is for each rainfall station. When the typhoon
center is located at any grid box, the climatology hourly rainfall
values for 371 stations could be estimated from the maps. Thus,
knowing the typhoon tracks can estimate an hourly precipitation
pattern and amount from climatology history. The coefficient of
determinations (R2) between model estimated and observed
cumulative rainfall are 0.7 and 0.81 for Dan-Shui (DSH) River and
Kao-Ping (KPS) River basins, respectively. Moreover, The R2 are
0.69 and 0.73 if the hourly rainfall individual stations in DSH and
KPS were considered. This model often gives reasonable typhoon
precipitation estimates on 371 rain gauge stations cumulus rainfall
and rainfall intensity (mm h�1) for 24–36 h. In particular, the
performance is very well in KPS basins (Lee et al., 2006) near the
Tsengwen Reservoir watershed at southwest Taiwan.

To make TRCM more reliable to our study, we update the TRCM
database from 1989 to 2008. However, we find that the predicted



Fig. 1. (a) The topography, location of hydrological and rain gauge stations in the Tsengwen Reservoir watershed; (b) The tracks of six selected typhoon events.
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rainfall still much smaller than the observations in the Tsengwen
Reservoir watershed. Thus, we choose six typhoon cases with
strong southwest monsoon for our AME purpose. Our work is to
compare the TRCM results with the TRCM with AME results over
the Tsengwen Reservoir watershed. The importance of the south-
west monsoon water vapor supply for the heavy rain event is
emphasized in Chien and Kuo (2011), among many others. There
are six most recent typhoons Mindulle (2004), Haitang (2005), Bilis
(2006), Kalmaegi (2008), Fungwong (2008), and Morakot (2009)
that are with strong southwest monsoon flow. We used these six
typhoons for our cases of AME. The typhoon tracks are shown in
the right panel of Fig. 1(b). With southwest monsoon flow persis-
tent, the typhoons produce heavy rainfall not just in the landfall
period but also the post-landfall period. The precipitation of
post-landfall defined as the precipitation during the time from
the typhoon departure point of Taiwan to 100 km offshore. The
profiles of six typhoon events with total rainfall amount in the
Tsengwen Reservoir watershed are summarized in Table 1. Table 1
indicates that, with exception of the Typhoon Kalmaegi, most of
the Tsengwen Reservoir watershed rainfall occurred in the post-
landfall period. In addition, Table 2 suggests that Typhoon Bilis
(Typhoon Kalmaegi) is with the fastest translation speed in the
landfall period (post-landfall period), among all six selected cases.
2.3. An ANN-based monsoon rainfall enhancement of TRCM

We use the Flux to improve the TRCM rainfall prediction in each
station, and calculate the difference between TRCM rainfall
amount and observation as a function of time in each rain gauge
station (DIFF). In order to identify a threshold of Flux for each rain
gauge, each 30 data of Flux are averaged with increasing rainfall
intensity, and a transition point is carried out based on the maxi-
mum slop difference of two linear regressions for two segments
in a scatter plot of the DIFF data (x-axis) and Flux (y-axis) in each
rain gauge station (Brunder et al., 1981; Pan et al., 2011). Therefore,
the determination of the transition point for the data of averaged
Flux vs increasing rainfall intensity can be represented by a set
of intersecting regression lines (Brunder et al., 1981). The maxi-
mum difference of the slops of two regression lines based on two
data set segmented by the DIFF of a transition point means a sharp
change in slope of a scatter of the Flux and DIFF data. Then, the sig-
nificant contribution of Flux to the DIFF could be determined for
the Flux over the threshold of effective moisture flux that is the
intercept of the regression line based on the data set with DIFF
greater than the DIFF of the transition point. All Flux over the
threshold is regarded as the EFlux which is used to enhance the ty-
phoon rainfall. An FNN is then applied to estimate the residual
from linear model to the DIFF. The AME thus is composed by the
relation between the EFlux and the evaluated extra rainfall. Our
approach is similar to Pan et al. (2011) except that we neglect
the wind field and use the residual rainfalls of time t � 1 h,
t � 2 h and t � 3 h as inputs. The neglect of wind filed input is to
avoid the information redundancy of water vapor flux and wind
field. Briefly, the output of the FNN is the residual rainfall of time
t based on the inputs including the SWFlux of time t, and residual
rainfalls of time t � 1 h, t � 2 h and t � 3 h.

2.4. State space neural network for hydrological modelling

Flood forecasting is a difficult task in simulation of the whole
hydrological cycle especially when the time of concentration is
short in Taiwan’s watershed with topography. Pan and Wang
(2004) introduced a dynamic recurrent neural network with state
space form, SSNN, to improve the flood prediction. Based on the
state space theory, the transition of a hydrological system could
be represented as unit hydrographs for investigating the rainfall–
runoff processes (Pan et al., 2007). Our methods are based on
Pan and Wang (2004) and Pan et al. (2007) and are summarized
below. The mathematical form of a SSNN can be written as

x̂iþ1 ¼Wh � f1ðWr � xt þWi � ut þ BhÞ ð2Þ

ŷt ¼Wo � f2ðWh2 � xt þ Bh2Þ ð3Þ

where Wh; Wr ; Wi; Wo, and Wh2 are matrices with dimensions
n� h; h� n; h�m; m� h2, and h2� n representing the weights
of the state-space neural network, respectively. Bh and Bh2 are two
vectors with h and h2 elements representing biases which have
the effect of increasing or lowering the net input of the activation
function, depending on whether they are positive or negative,
respectively. f1 and f2 are two activation functions (linear/nonlinear)
for describing the behavior of the system. Restated, the external sig-
nal of time t, ut, and the internal signal of time t, xt, are firstly mul-
tiplied by the synaptic weights and the biases are used to apply an
affine transformation to the signals of the linear combiner. After the
activation function transfers the sum of the signals and biases to
output signals, these output signals are again multiplied by the syn-
aptic weights and are summed as a system output of time t, ŷt , or as
an internal signal in next time step. Fig. 3 is the structure of a SSNN
which describes the links between neurons and the above two
equations.



Fig. 2. The differences of 925 h Pa wind vector (vector, m s�1) and Flux (shaded, m s�1) between six selected typhoons during post-landfall period and averaged pattern
calculated from June to August during 2004 to 2009. The green rectangular region is AME flux training region.

Table 1
The profiles of selected typhoon events.

Year Typhoon Categ. Pricipitation in Tsengwen Reservoir Watershed Translation speed

PrL (mm) LF (mm) PoL (mm) PrL (m s�1) LF (m s�1) PoL (m s�1)

2004 Mindulle 2 1 109 1134 4.35 2.8 5.17
2005 Haitang 3 390 1319 1939 2.46 4.27 2.49
2006 Bilis TS 116 350 1045 6.06 8.83 3.78
2008 Kalmaegi 1 49 2659 1369 5.46 2.62 6.9
2008 Fungwong 2 2 62 480 5.73 5.82 5.3
2009 Morakot 1 1311 2338 5736 2.06 2.48 2.08

Note: Categ.: Category; PrL: pre-landfall; LF: landfall; PoL:post-landfall.
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2.5. Flowchart and performance evaluation

Fig. 4 summarizes the procedures of TRCM with AME in flow-
chart and the application to the rainfall–runoff simulation. We
use the DIFF and the SWFlux to identify the threshold of SWFlux
in each station, and further compute the EFlux. The EFlux is used
in AME to improve TRCM. With the AME improved TRCM for each
rain gauge station, we use the kriging method to objectively



Table 2
The altitude and effective flux threshold of the selected rain gauge stations.

Rain gauge Altitude (m) Threshold of effective flux (m s�1)
5 Typhoons without

Mindulle Haitang Bilis Kalmaegi Fungwong Morakot 6 typhoons Mean S.D.

Alishan 2413 0.16 0.18 0.15 0.17 0.17 0.16 0.17 0.17 0.01
Tatung 1246 0.17 0.19 0.16 0.18 0.18 0.17 0.17 0.17 0.01
Laiton 1090 0.16 0.17 0.15 0.17 0.17 0.17 0.17 0.17 0.01
Tsaolin 1000 0.18 0.20 0.16 0.19 0.18 0.20 0.18 0.18 0.01
Kungtien 768 0.19 0.20 0.15 0.17 0.17 0.20 0.16 0.18 0.02
Maton 245 0.15 0.17 0.15 0.17 0.17 0.17 0.16 0.16 0.01
Tsengwen 207 0.18 0.19 0.16 0.19 0.18 0.19 0.18 0.18 0.01

Note: S.D.: Standard deviation.

Fig. 3. The structure of a state space neural network.
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estimate average rainfall for the Tsengwen Reservoir watershed. In
addition, the rule of mass balance is used to calculate both the
effective rainfall from the average rainfall and the direct runoff
from the inflow of the Tsengwen Reservoir. Firstly, a non-tracer-
based method, simple graphical approach (Linsley et al., 1975), is
adopted to identify the direct runoff from the observed inflow by
removing base flow. Once the total volume of the direct runoff is
determined, the effective rainfall could be carried out by the phi
index method for rainfall loss (Chow, 1959). The effective rainfall
and the direct runoff are used as the input and output of the hydro-
logical rainfall–runoff model developed by Pan and Wang (2004).

According to the flowchart, there are three major components
to improve the flood forecasting, including a linear regression
between effective southwest monsoon (EFlux) and the difference
between observed rainfall and simulated rainfall by TRCM (Diff),
a FNN for estimating the residuals between linear regression and
Diff, and a SSNN for performing flood forecasting based on TRCM
with AME. Therefore, the weights of FNN and SSNN could be re-
garded as the key model parameters.

Hashem (1992) pointed out that one of the key factors that
affect the success of ANN, is the ability to extract information
about the model structure and the relationships between its inputs
and outputs from the trained network. Such information is essen-
tial for model validation and for process optimization and control
(Hashem, 1992). Therefore, all weights adopted in this study are
optimized by a conjugate gradient back-propagation with Fletch-
er–Reeves updates (Scales, 1985) that is the rationale on the partic-
ular set of weights. Due to the optimization of weights of ANNs, we
did not experimented with other sets of values.

Our performanceof hydrological simulation is evaluated via four
criteria as follows:

(a) The coefficient of efficiency, CE, is defined as

CE ¼ 1
Pt

t¼1½Qest;t � Q obs;t�2Pt
t¼1½Q est;t � Q obs; t�2

ð4Þ

where Qest;t denotes the discharge of the simulated hydrograph for
time index t (m3 s�1), Qobs;t is the discharge of the observed hydro-
graph for time index t (m3 s�1). The better the fit, the closer CE is to
1.

(b) The error of peak discharge, EQp (%), is defined as

EQpð%Þ ¼
Q p;est � Q p;obs

Q p;obs
� 100% ð5Þ

where Qp;est denotes the peak discharge of the simulated hydro-
graph (m3 s�1) and Qp;obs is the peak discharge of the observed
hydrograph (m3 s�1).

(c) The error of the time for peak to arrive, ETp, is defined as



Fig. 4. The flowchart of the TRCM with AME and its application to runoff simulation.
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ETp ¼ Tp;est � Tp;obs ð6Þ

where Tp;est denotes the time for the simulated hydrograph peak to
arrive (h) and Tp;obs represents the time required for the observed
hydrograph peak to arrive (h).

(d) The error of total discharge volume, VER (%), is defined as

VERð%Þ ¼
PT

t¼1Q est;t �
Pt

t¼1Q obs;t

� �

PT
t¼1Q obs;t

� 100% ð7Þ

where Qest;t denotes the discharge of the simulated hydrograph for
time index t (m3 s�1), Qobs;t is the discharge of the observed hydro-
graph for time index t (m3 s�1). The better the fit, the closer VER is to 0.
3. Results and discussions

3.1. Threshold analysis of effective flux

Fig. 5 is the scatter plots of the DIFF data and SWFlux in seven
stations. The flux threshold varies in a similar spatial pattern as
shown in Fig. 5. The variance of the flux threshold of each rain
gauge station is conceivably induced by the interaction of south-
west monsoon, typhoon rainfall, and regional environmental con-
dition, like the translation speed of typhoons. To identify the
threshold of the effective moisture flux, each 30 data of SWFlux
are averaged with increasing rainfall intensity, and a transition
point is carried out based on the maximum slop difference of
two linear regressions for two segments. The thresholds of effec-
tive moisture flux at 7 stations for all test cases are shown in
Table 2. The lower the threshold, the larger the rainfall enhance-
ment is expected. Table 2 suggests that SWFlux threshold in gen-
eral the smallest (largest) without Typhoon Bilis (Typhoon
Haitang) in the data base. This is due to the fact that Typhoon Bilis
is with large SWFlux but its small rainfall amount can be attributed
to the typhoon’s fast translation speed. On the other hand,
TyphoonHaitang is with a smaller SWFlux and a larger rainfall
due to its slow moving. Briefly, most results of cross analysis
ranges between one standard deviation, and the threshold identi-
fied from all typhoon cases (the column ‘‘6 typhoons’’ in Table 2)
could be the reasonable standard of EFlux for triggering extra
typhoon rainfall.

Fig. 6(a) shows transition of the threshold of effective flux
among rain gauge stations through cross analysis of six typhoons.
The variance of the flux threshold of each rain gauge station is in-
duced by the interaction of southwest monsoon, typhoon rainfall,
and regional environmental condition, like the translation speed
of typhoons. Briefly, most results of cross analysis ranges between
one standard deviation, except Typhoon Bilis, and the threshold
identified from all typhoon cases (the column ‘‘6 typhoons’’ in Ta-
ble 2) could be the reasonable standard of EFlux for triggering extra
typhoon rainfall. Fig. 6(b)–(d) shows the relation between the
threshold of EFlux for each rain gauge and different geographical
and hydrological factors, including elevation, zonal distances from
the lowest rain gauge Tsengwen station, and the cumulative rain-
fall of each rain gauge. To compare all factors above, each factor is
normalized between 0 and 1 following the rule:
ðFstation � FminÞ=ðFmax � FminÞ ð8Þ



Fig. 5. The scatter plot of the DIFF and SWFlux at (a) Alisan, (b) Tatung, (c) Laiton, (d) Tsaolin, (e) Kungtien, (f) Maton, and (g) Tsengwen.

96 T.-Y. Pan et al. / Journal of Hydrology 506 (2013) 90–100
Fstation is the factor of the evaluated rain gauge; Fmax and Fmin means
the maximum and minimum value of the factor in whole rain
gauges. Fig. 6(b) indicates there is no direct relation between
elevation and the threshold of EFlux. However, Fig. 6(c) suggested
two subgroups of the threshold values with respect to the zonal dis-
tance to the Tsengwen rain gauge station. The difference between



Fig. 6. (a) The transition of the threshold of effective flux among rain gauge stations through cross analysis of six typhoons. The relation between the threshold of effective
Flux for each rain gauge and normalized (b) elevation, (c) zonal distance, and (d) the cumulative rainfall of each rain gauge station.
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the factors, elevation and zonal distance to Tsengwen rain gauge
station, is related to the description of Kungtien and Tatung rain
gauge stations because these two stations locate on the boundary
in the downstream of the Tsengwen reservoir watershed. The two
stations were classified into the high elevation group based on ele-
vation factor. However, the factor, zonal distance of each rain gauge
station to Tsengwen rain gauge station, is better to describe the
topography high in the East and laying down to the West. The high
altitude upstream stations of Alishan, Laiton and Maton are with
the larger zonal distance (see also Table 2 and Fig. 1). These up-
stream high altitude stations are with lower threshold. Fig. 6(d)
suggests that these upstream high altitude stations are also with
the larger rainfall. The results indicate that the flux threshold is re-
lated to the topographic lifting of the moist air, with lower thresh-
old in the upstream high altitude stations in the watershed.

3.2. Average rainfall of the Tsengwen Reservoir watershed

Fig. 7 presents the scatter plot of the average observed and esti-
mated rainfall intensity (mm h�1) via TRCM with/without AME.
Fig. 7 demonstrates the efficacy of the AME because the slope of
linear regression line of the TRCM with AME is (slope: 0.68) is clo-
ser to one than that of the TRCM without AME (slope: 0.38). The
hourly rainfall of TRCM is estimated by climatology maps, this
model tends to underestimate the larger rainfall and overestimate
the light rainfall (or no rain) (Lee et al., 2006; Yeh, 2002). Thus,
these six typhoons’ rainfall estimations of TRCM in Fig. 7 are
underestimated because they are with strong southwesterly flow.
Fig. 8 demonstrates the observed rainfall intensity and rainfall
intensity prediction of TRCM with AMEwt (all six cases in the train-
ing data base of AME, Model A), and TRCM with AMEcv (test case
removed from the training data base of AME, Model B), and TRCM
(Model C), and the SWFlux. In these three models, Model B is really
an operational rainfall forecasting work to achieve the purpose of
this study because the test event is removed from the training data
set. It is not surprising that the Model A with all the test cases in
the AME training results in predictions close to the observations.
On the other hand, Model B prediction is still better than the origi-
nal TRCM (Model C) prediction, in that the amount and the multi-
ple peak of rainfall are better predicted. The fact that the Model B
in general yields prediction resembles Model A suggests that the
AME method is robust. Fig. 8 further suggests that heavy rainfall
prediction is usually occurred concurrently with the SWFlux.
Moreover, abundant rainfall often happens in the post-landfall
period for slow moving storms due to the long duration of typhoon
circulation and continuous monsoon water vapor supply which
TRCM cannot simulate well. On the other hand, Typhoon Bilis
(Typhoon Morakot) is with very fast (slow) translation speed
during post-landfall period, the prediction of Model B is overesti-
mated (underestimated) in the presence of significant SWFlux.



Fig. 7. The performance of the TRCM and the TRCM with AME to observed rainfall
intensity (mm h�1) of the Tsengwen Reservoir watershed.

98 T.-Y. Pan et al. / Journal of Hydrology 506 (2013) 90–100
One of the basic assumption in AME is maximum intensity of the
SWFlux would induce the maximum watershed rainfall if all other
relevant factors are equal and which in reality they may not (Pan
et al., 2011). Therefore, the rainfall pattern of Typhoon Morakot
is highly related to the pattern of water vapor flux because the
slow translation speed provides a strong connection between Ty-
phoon Morakot and southwest monsoon that can meet the
assumption mentioned above. However, the fast translation speed
of Typhoon Bilis decreases the effect of southwest monsoon on
water vapor supply that weakens the assumption mentioned
above. The inclusion of translation speed factor in the AME scheme
is a subject of future work. More cases of typhoon with strong
southwest monsoon are required for the training purpose.
Fig. 8. The events series of rainfall intensity of observed rainfall (black line), the TRCM w
(gray).
3.3. The performance of flood forecasting

Through the indirect system identification algorithm proposed
by Pan and Wang (2005), the SSNN of the Tsengwen Reservoir wa-
tershed is built as a single-input–single-output model with 5-order
state space based on the effective observed rainfall and direct run-
off. Table 3 gives the performances of the hydrological model based
on different estimated rainfall for 1-h-ahead flood forecasting of
six typhoons. Except for case of Typhoon Bilis, all other cases with
observations as input have CE ranges from 0.9 to 0.95, ETp ranges
from 0 to 1 h, and VER ranges from �9.83% to 1.21%. These values
of CE, ETp and VER demonstrate the applicability of the SSNN model
for flood forecasts. The observation input, however, underesti-
mates the EQp for Typhoons Mindulle, Haitang and Bilis, probably
due to the fact that the unit hydrographs of these three typhoons
are sharper than that of the SSNN. Thus the peak flow in these
cases is underestimated. Model B cases without Typhoon Fung-
wong, have the same or better performance in ETp as compared
to that with the observation as input. The poor performance of Ty-
phoon Fungwong in ETp may be due to the fact that AME adds
much more rainfall to the TRCM prediction after the peak rainfall
(see also Fig. 9).

The hyetographs of six typhoon cases and the hydrographs of 1-
h-ahead direct runoffs are illustrated in Fig. 9. Fig. 9 also presents
event series of the rainfall errors ofModel C, and Model B, Model A,
observed effective rainfall, and direct runoff. Fig. 9 indicates that
the time lag between peak rainfall and peak inflow of Typhoon Bilis
is not the same as that of other typhoons and thus is with a differ-
ent rainfall–runoff relation. Fig. 9 also suggests that the significant
underestimation of Model C precipitation (red dots line) lead to the
underestimation of runoff processes (red line). Therefore, the Mod-
el C runoff in Table 3 shows the poor performances of six typhoons’
1-h-ahead flood forecasting. Furthermore, the hydrographs pro-
duced by the estimated rainfalls of Model A and Model B (purple
line and green line) are closer to that of observed runoff (black line)
in Fig. 9 due to the AME improvement of TRCM.

Table 4 gives the average performances of the hydrological
models based on different rainfall estimations for flood forecasts
1–3 h ahead. Table 4 suggests the Model B improvement over the
model C not only by 51% in peak discharge, and 64% in total dis-
charge volume, but also from 0.38 to 0.66 (1 h ahead) in coeffi-
cient efficiency. The Model A with test case in the training in
ith AMEcv (green line), the TRCM with AMEwt (purple line), TRCM (red line), and Flux



Table 3
The performance of the hydrological model based on different estimated rainfall for 1-h-ahead flood forecasting of six typhoons.

Observation Model A Model B Model C Observation Model A Model B Model C

CE EQp (%)
Mindulle 0.90 0.62 0.81 0.00 �23.92 �61.94 �29.94 �68.27
Haitang 0.90 0.64 0.51 0.60 �36.55 �47.98 �37.98 �53.44
Bilis 0.83 0.67 0.72 �0.11 �21.77 �31.63 2.83 �20.43
Kalmaegi 0.94 0.58 0.77 0.67 1.50 �33.72 �35.32 �31.94
Fungwong 0.93 0.75 0.27 0.46 1.81 �18.67 �0.86 �41.78
Morakot 0.95 0.78 0.87 0.67 5.09 �45.54 �31.95 �53.81

ETp (h) VER (%)
Mindulle 1 �9 1 �9 0.46 �16.64 �12.14 �61.95
Haitang 1 �9 5 �14 �5.33 �28.14 �24.04 �35.95
Bilis �25 �24 1 �24 �12.73 27.95 8.05 �50.87
Kalmaegi 1 6 3 6 �1.04 �24.40 �32.12 �24.16
Fungwong 0 11 11 �6 �9.83 �12.79 �23.91 �40.00
Morakot 1 3 3 3 1.21 �17.99 �9.85 �46.57

Model A: TRCM with AMEwt; Model B: TRCM with AMECV; Model C: TRCM only.

Fig. 9. The event series of (a) rainfall error and observed rainfall (mm); (b) direct runoff (m3 s�1) based on TRCM (red line), based on observed effective rainfall (blue line),
based on TRCM with AMEcv (green line), based on TRCM with AMEwt (purple line), and observed value (black).

Table 4
The average performances of hydrological models based on different estimated
rainfalls for 1 to 3-h-ahead flood forecasting.

Leading time (h) 1 2 3 1 2 3

CE EQP (%)
Observation 0.91 0.89 0.86 �12.31 �12.90 �26.49
Model A 0.67 0.64 0.58 �39.91 �39.93 �49.33
Model B 0.66 0.61 0.53 �22.20 �22.18 �32.49
Model C 0.38 0.35 0.30 �44.94 �44.32 �53.04

ETp (h) VER (%)
Observation �3.50 �3.33 �5.67 �4.54 �4.71 �16.87
Model A �3.67 �2.83 �2.00 �12.00 �12.29 �23.48
Model B 4.00 4.67 5.67 �15.67 �15.37 �23.16
Model C �7.33 �7.17 �6.50 �43.25 �43.63 �51.33

Model A: TRCM with AMEwt; Model B: TRCM with AMECV; Model C: TRCM only.
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general is slightly better than Model B without the test case
except for the peak discharge. This may be due to the fact that
Model A are usually with larger rainfall than the Model B, and
thus the mass balance rule may reduce too much of the rainfall
peak for Model A. Furthermore, Model C is able to predict the
peak of flood in advance because the peaks of the estimated rain-
falls of the TRCM without an AME are always earlier than or equal
to the observed rainfalls. The arrival time of peak flow for Model
B is on the average around 5 h late. The major error source could
be induced by adding much more rainfall to TRCM after the ob-
served peak rainfall to cause the significant delay of the rainfall
peaks of Typhoon Bilis and Fungwong predicted by Model B as
shown in Fig. 8.
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4. Conclusions

The typhoon rainfall climate model (TRCM), based on 371 sta-
tions over Taiwan during 1989–2008, gives reasonable precipita-
tion estimates on each rain gauge station for 24–36 h time scale
for typhoon. However, this model underestimated the rainfall
amount of some typhoons with significant southwest monsoon
because of TRCM based on the typhoon rainfall climatology. This
phenomena influence on the upstream of Tsengwen Reservoir
watershed. This study uses an ANN-based southwest monsoon
rainfall enhancement (AME) to improve the typhoon rainfall and
runoff forecast over the Tsengwen Reservoir watershed in Taiwan.
The strength of the southwest monsoon is evaluated in the moist
flux in the detecting zone located at sea over southwestern Taiwan.
The AME is composed of linear regression and artificial neural
network (ANN) to estimate the effect of summer monsoon on
typhoon rainfall. The precipitations of seven rain gauge stations
and the southwest monsoon water vapor flux are analyzed to get
the spatial distribution of the effective water vapor flux threshold,
and the threshold is used to build the AME model. We found that
the flux threshold is related to the topographic lifting of the moist
air, with lower threshold in the upstream stations in the mountain-
ous watershed. The lower flux threshold is with a larger rainfall
amount in the Tsengwen Reservoir watershed. Our main results
suggest that TRCM with AME is robust in producing better multiple
rainfall peaks for the watershed. The improved rainfall leads to
better flood predictions. The improved runoff processes in the wa-
tershed, in particular, are most significant in the coefficient of effi-
ciency, peak flow discharge with 51% improvement, and total
volume with 64% improvement. The drawback of the method per-
haps is the arrival time of peak flow for TRCM with AME is on the
average around 5 h late. In a reservoir operation with very short
time of concentration, prediction better early than late, the delay
of the 5 h for the arrival time of peak flow require some adjustment
for the operation.

Briefly, our method has improved the rainfall forecast of TRCM,
and is applied to flood forecasting. It will be useful for weather
forecaster and reservoir operator if more typhoon cases with
strong southwesterly flow are included for training. However, the
only one meteorological factor in our method is southwesterly
water vapor flux. Our result also indicates the translation speed
of typhoon may influence on the rainfall. The inclusion of transla-
tion speed factor in the AME scheme is a subject of future work.
More cases of typhoon with strong southwest monsoon are
required for the training purpose.
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