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Abstract

This paper contains a collection of English translations of twenty-one of Hans Ertel’s papers on geophysical
fluid dynamics. The selected papers were originally published between 1942 and 1970 in either German or
Spanish. This collection includes the four classic 1942 papers on vorticity and potential vorticity conservation
principles and also papers on generalized conservation relations, hydrodynamic commutation formulas, Clebsch
and Weber transformations, and isogons and isotachs in two-dimensional flows.

Zusammenfassung

Dieser Artikel ist eine Sammlung von 21 Veröffentlichungen zur Strömungsdynamik von Hans Ertel. Die aus-
gewählten Artikel erschienen ursprünglich in deutscher oder spanischer Sprache im Zeitraum von 1942 bis 1970.
In der Sammlung enthalten sind die vier klassischen Artikel von 1942 über Vorticity und die Erhaltung poten-
tieller Vorticity, sowie weitere Artikel zu allgemeinen Erhaltungssätzen, hydrodynamischen Vertauschungsrela-
tionen, Clebsch- und Weber-Transformationen, und Isogonen und Isotachen in zweidimensiononalen Strömungen.

Preface

In view of the central role played by Ertel’s potential
vorticity in modern geophysical fluid dynamics, it may
seem surprising that few of our fellow scientists have
read Ertel’s original works on the subject. This may be
because most of these original papers were not written
in English and were published in journals not easily ac-
cessible to many of us. It is in hopes of making Ertel’s
works more accessible that we provide the following set
of translations.

The complete bibliography of Ertel’s scientific con-
tributions, published between 1929 and 1972, lists a
staggering 272 papers. Most of the papers are short,
containing a concise mathematical argument and a brief
physical interpretation (figures are rare). The majority
of the papers are on meteorology, but there also appear
papers on oceanography, cosmology, atomic physics,
volcanoes, fluvial erosion, etc. In selecting the papers
for this special issue we have limited the topic to geo-
physical fluid dynamics and have been greatly aided
by the collection of original German and Spanish arti-
cles reproduced in the five “Ertel volumes” edited by

W. Schröder and H.-J. Treder, published in coopera-
tion with the Interdivisional Commission on History
of the International Association of Geomagnetism and
Aeronomy (IAGA). The twenty-one translations pre-
sented here are as follows:

1. ERTEL, H., 1942a: Ein neuer hydrodynamischer
Wirbelsatz. Meteorol. Z. (Braunschweig), 59(9), S.
277–281.

2. ERTEL, H., 1942b: Ein neuer hydrodynamischer
Erhaltungssatz. Die Naturwiss. (Berlin), 30(36), S.
543–544.

3. ERTEL, H., 1942c: Über hydrodynamische
Wirbelsätze. Physik. Z. (Leipzig), 43, S. 526–529.

4. ERTEL, H., 1942d: Über das Verhältnis des neuen
hydrodynamischen Wirbelsatzes zum Zirkulationssatz
von V. Bjerknes. Meteorol. Z. (Braunschweig),
59(12), S. 385–387.

5. ERTEL, H., 1952: Über die physikalische Bedeutung
von Funktionen, welche in der
Clebsch-Transformation der hydrodynamischen
Gleichungen auftreten. Sitz.-Ber. Dt. Ak. d. Wiss.
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Berlin, Klasse f. Math. u. allg. Naturwiss., 1952, No.
3, (Berlin 1952), S. 3–18.

6. ERTEL, H., 1955a: Kanonischer Algorithmus
hydrodynamischer Wirbelgleichungen. Sitz.-Ber. Dt.
Ak. d. Wiss. Berlin, Klasse f. Math. u. allg.
Naturwiss., 1954, No. 4, (Berlin 1955), S. 3–10.

7. ERTEL, H., 1955b: Ein neues Wirbel-Theorem der
Hydrodynamik. Sitz.-Ber. Dt. Ak. d. Wiss. Berlin,
Klasse f. Math. u. allg. Naturwiss., 1954, No. 5,
(Berlin 1955), S. 5–11.

8. ERTEL, H., 1956: Orthogonale Trajektoriensysteme
in stationären ebenen Strömungsfeldern
inkompressibler idealer Flüssigkeiten. Dt. Ak. d.
Wissenschaften zu Berlin 1946–1956; Aus der Klasse
für Mathematik, Physik und Technik, Berlin, S.
67–71.

9. ERTEL, H., 1957: Sobre una relación general entre la
velocidad del viento y la intensidad del campo
hidrodinámico en la atmósfera. Gerlands Beitr. z.
Geophysik (Leipzig), 66(4), p. 323–329.

10. ERTEL, H., 1960a: Teorema sobre invariantes
sustanciales de la Hidrodinámica. Gerlands Beitr. z.
Geophysik (Leipzig), 69(5), p. 290–293.

11. ERTEL, H., 1960b: Relación entre la derivada
individual y una cierta divergencia espacial en
Hidrodinámica. Gerlands Beitr. z. Geophysik
(Leipzig), 69(6), p. 357–361.

12. ERTEL, H., 1961: Isoclinas e isótacas en corrientes
potenciales bidimensionales de un flúido
incompresible. Gerlands Beitr. z. Geophysik
(Leipzig), 70(1), p. 55–58.

13. ERTEL, H., 1963a: Analogı́a entre las ecuaciones del
movimiento y las ecuaciones del torbellino en la
Hidrodinámica. Gerlands Beitr. z. Geophysik
(Leipzig), 72(5), p. 312–314.

14. ERTEL, H., 1963b: Relaciones entre operaciones
diferenciales del cálculo vectorial y paréntesis de
Lagrange, con aplicación a la Hydrodinámica.
Geofisica pura e appl. (Milano), 55, 1963/II, p.
119–122.

15. ERTEL, H., 1964: El número máximo de invariantes
independientes en Hidrodinámica. Revista de
Geofı́sica (Madrid), XXIII, Nums. 91/92, p. 121–124.

16. ERTEL, H., 1965a: Hydrodynamische
Vertauschungs-Relationen. Acta Hydrophysica,
IX(3), Berlin, S. 115–123.

17. ERTEL, H., 1965b: Kommutative Operatoren
instationärer Strömungsfelder perfekter, piezotroper
Flüssigkeiten. Monatsber. Dt. Ak. d. Wiss. Berlin,
7(4), S. 296–298.

18. ERTEL, H., 1965c: Theorem über die unimodulare
Transformation hydrodynamischer
Numerierungskoordinaten. Gerlands Beitr. z.
Geophysik (Leipzig), 74(3), S. 255–260.

19. ERTEL, H., 1970a: Eine Relation zwischen
kinematischen Parametern horizontaler
Strömungsfelder in der Atmosphäre. Időjárás
Budapest, 74(1–2), S. 98–102.

20. ERTEL, H., 1970b: Spin und Deformationstensor im
Zusammenhand mit Isogonen und Isotachen in
ebenen Strömmungsfeldern. Acta Geodaet., Geophys.
et Montanist. Acad. Sci. Hung., Tomus 5 (3–4),
Budapest, pp. 383–387.

21. ERTEL, H., 1970c: Transformation der
Differentialform der Weberschen hydrodynamischen
Gleichungen unter Berücksichtigung der Erdrotation.
Gerlands Beitr. z. Geophysik (Leipzig), 79(6), p.
421–424.

Some of these papers are best studied in groups.
For example, papers 1–4 present the results on poten-
tial vorticity with which we are so familiar. When
these four papers were published in 1942, many read-
ers probably thought that the new potential vorticity
equation was very elegant, but with practical applica-
tions limited to tracer studies using special isentropic
analyses. Later developments, however, would prove
that Ertel’s potential vorticity is much more useful than
this simple initial understanding. The potential vortic-
ity ρ−1(2Ω + ∇ × v) · ∇θ is a combination of the
wind and mass fields. For general nonbalanced flows,
knowledge of the potential vorticity field is not suffi-
cient to determine both wind and mass. However, large-
scale atmospheric flows are quasi-static, and the wind
and mass fields have mutually adjusted so that there ex-
ists some kind of approximate balance between them
(e.g., geostrophic, gradient, or nonlinear balance). In
such situations, the density ρ, the velocity v, and the
potential temperature θ can all be expressed in terms of
the pressure p, so that the potential vorticity determines
everything, if you can just invert it to find p. Thus, it
is the concept of balance coupled with potential vor-
ticity conservation which proves to be such a power-
ful tool in analyzing geophysical flows. In addition,
the transformation to different horizontal coordinates
(e.g., geostrophic coordinates) or a different vertical co-
ordinate (potential temperature) can often simplify the
mathematics and lead to concise and elegant descrip-
tions of the dynamics. In any case, the fundamental un-
derlying notion is Ertel’s potential vorticity (or an ap-
propriate approximation to it); this is the motivation for
our continuing interest in these classic 1942 papers.
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Papers 6, 10, 11, and

22. ERTEL, H., and C.-G. ROSSBY, 1949: A new
conservation theorem of hydrodynamics. Geofisica
Pura e Appl. (Milano), 14, Fasc. 3–4, pp. 189–193.

can also be read as a group. The latter paper (22) is not
included in the present collection since it was published
in English (one of only two of Ertel’s papers that were
published in English). This group of papers deals with
generalizations of the original 1942 results. In particu-
lar paper 6 provides a canonical algorithm from which
the results of both the group 1–4 and paper 22 are easily
obtained.

Finally, papers 8, 12, 19, and 20 can also be read
as a group. Reflecting Ertel’s interest in connecting dy-
namic meteorology with operational practice in synop-
tic meteorology, they deal with isogons and isotachs in
two-dimensional flow and the use of natural coordinate
systems.

In producing these translations we have attempted to

preserve the formatting of the original papers as much
as possible. References, for example, are cited in each
paper with a style that matches that paper’s original for-
matting, and the reference lists at the end of each paper
are presented in their original untranslated forms. Cer-
tain symbols and notations, however, were updated to
more modern conventions. For example, vector quan-
tities have been represented using boldface symbols
(rather than using an arrow symbol), and the “∇” sym-
bol was used in place of the “grad” operator. Also, some
formatting modifications were made in order to develop
some coherency and consistency across the collection
of papers as a whole (such as the formatting of section
headings and equation numbers) and to deal with the
two-column format of this journal (this affected the for-
matting of many of the longer formulas). Although Er-
tel’s papers are largely free of typographical errors in the
equations, we did detect a few obvious ones, and these
have been corrected in the translations.

1 ERTEL (1942a): A new hydrodynamical vorticity equation

Relative to a rotating coordinate system, whose ro-
tation is given by the constant rotation vector Ω, one can
write the Eulerian hydrodynamical equation for an ideal
compressible fluid,

∂v

∂t
+ ∇

(

1
2
v2

)

− v × (∇× v) + 2Ω × v

= −∇Φ − α∇p,
(1.1)

together with the continuity equation

dρ

dt
=
∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v. (1.2)

The foregoing symbols have the usual meaning (α =
1/ρ is the specific volume, Φ the potential of external
forces).

The velocity ve is related to the position vector r

through
ve = Ω × r. (1.3)

The velocity of a mass element relative to an inertial
system (non-rotating system) then becomes

v + ve = v + Ω × r. (1.4)

Since
∇× (Ω × r) = 2Ω, (1.5)

then
Z = ∇× (v + ve) = ∇× v + 2Ω, (1.6)

is the absolute vorticity, i.e., the vorticity relative to an
inertial system, so that the Eulerian equation can be
written

∂v

∂t
+ ∇

(

1
2
v2

)

− v × Z = −∇Φ − α∇p. (1.7)

Using

∇× (α∇p) = −∇p×∇α (1.8)

and taking the curl of (1.7), we obtain

∂

∂t
∇× v −∇× (v × Z) = ∇p×∇α. (1.9)

Now consider ψ = ψ(r, t) to be a hydrodynamical
invariant, i.e. a physical property which is conserved for
every fluid element:

dψ

dt
=
∂ψ

∂t
+ v · ∇ψ = 0, (1.10)

as for example the potential temperature under adia-
batic processes, or the polytropic temperature under
polytropic conditions1, or the total water content under
conditions of no precipitation and without moisture in-
put. In general, the invariant ψ does not have the same
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value for all particles, but gives a field of ψ = constant
surfaces2.

Scalar multiplication of (1.9) by ∇ψ yields

∇ψ ·
∂

∂t
∇× v −∇ψ · ∇ × (v × Z)

= (∇p×∇α) · ∇ψ,
(1.11)

or

∇ψ ·
∂Z

∂t
−∇ψ ·∇×(v×Z) = (∇p×∇α)·∇ψ, (1.12)

since from (1.6)

∂Z

∂t
=

∂

∂t
∇× v. (1.13)

Now, using

∇ · [∇ψ × (v × Z)] = −∇ψ · ∇ × (v × Z), (1.14)

(1.12) becomes

∇ψ·
∂Z

∂t
+∇·[∇ψ×(v×Z)] = (∇p×∇α)·∇ψ. (1.15)

The vector algebra formula (triple vector product
formula)

a × (b × c) = b(c · a) − c(b · a) (1.16)

results in

∇ψ × (v × Z) = v(Z · ∇ψ) − Z(v · ∇ψ), (1.17)

which, along with

v · ∇ψ = −
∂ψ

∂t
,

allows us to write

∇ψ × (v × Z) = v(Z · ∇ψ) + Z
∂ψ

∂t
. (1.18)

Taking the divergence, we obtain

∇ · [∇ψ × (v × Z)] = v · ∇(Z · ∇ψ)

+ (Z · ∇ψ)∇ · v + Z ·
∂

∂t
∇ψ

(1.19)

since (1.5) and (1.6) imply

∇ · Z = 0. (1.20)

Substitution of (1.19) into (1.15) results in

∇ψ ·
∂Z

∂t
+ v · ∇(Z · ∇ψ) + Z ·

∂

∂t
∇ψ

+ (Z · ∇ψ)∇ · v = (∇p×∇α) · ∇ψ
(1.21)

which, because of

∇ψ ·
∂Z

∂t
+ Z ·

∂

∂t
∇ψ =

∂

∂t
(Z · ∇ψ) (1.22)

and

∂

∂t
(Z · ∇ψ) + v · ∇(Z · ∇ψ) =

d

dt
(Z · ∇ψ), (1.23)

gives

d

dt
(Z·∇ψ)+(Z·∇ψ)∇·v = (∇p×∇α)·∇ψ. (1.24)

Division by ρ = 1/α and use of the equation

1

ρ
∇ · v = −

1

ρ2

dρ

dt
=

d

dt

(

1

ρ

)

=
dα

dt
(1.25)

results in

d

dt
(αZ · ∇ψ) = α(∇p×∇α) · ∇ψ, (1.26)

an equation whose right hand side has a very simple
physical meaning. To see this, consider the form

(∇α′ ×∇β′) · ∇γ′.

In so far as there is no homogeneous relation
F (α′, β′) = 0 between the scalar functions α′ and β′,
the surfaces α′(r, t) = constant and β ′(r, t) = constant
form a solenoid system. If the third scalar function γ ′

is not of the form γ ′ = γ′(α′, β′), then this solenoid is
divided into cells between the surfaces γ ′(r, t) = con-
stant. Assume all three families of surfaces are given
by

. . . , α′ − 1, α′, α′ + 1, . . .

. . . , β′ − 1, β′, β′ + 1, . . .

. . . , γ′ − 1, γ′, γ′ + 1, . . .

so that we have unit cells. Such a unit cell is shown in
Fig. 1.1. It is formed by the intersections of the surfaces

α′ = constant and α′ + 1 = constant

β′ = constant and β′ + 1 = constant

γ′ = constant and γ ′ + 1 = constant

The surface F in Fig. 1.1 is perpendicular to ∇α′ ×
∇β′ and it contains the directions of the gradient of
α′ (which is the direction a) and of the gradient of β ′

(which is the direction b). The direction of c is that of
the gradient of γ ′ which is perpendicular to the surface
of constant γ′. The vector c and the normal of F form
the angle ν. The vectors a and b lie in the surface F and
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Fig. 1.1

form the angle λ. This is also (except for higher order
terms) the angle between the surface α′ + 1 and the sur-
face β′ (and between the surface α′ and the surface β′ +
1), because a ⊥ α′ (a ⊥ α′ + 1) and b ⊥ β′ (b ⊥ β′ +
1). The length of c is the height of the unit cell, because
c gives the distance between the surfaces of γ ′ +1 and
γ′. The surface area of F is

F =
ab

sinλ
(1.27)

because a/ sinλ is the side of F to which b is perpen-
dicular. Because the perpendicular to γ ′ and the perpen-
dicular to F form the angle ν , the projection of F onto
γ′ is given by

projection of F =
F

cos ν
. (1.28)

The volume V of the unit cell is c(F/ cos ν), or

V =
abc

sinλ cos ν
. (1.29)

Now,

(∇α′ ×∇β′) · ∇γ′

= |∇α′||∇β′| sinλ|∇γ′| cos ν,
(1.30)

and since

|∇α′| =
(α′ + 1) − α′

a
=

1

a

|∇β′| =
(β′ + 1) − β′

b
=

1

b

|∇γ′| =
(γ′ + 1) − γ′

c
=

1

c































, (1.31)

we have

(∇α′ ×∇β′) · ∇γ′ =
sinλ cos ν

abc
, (1.32)

which together with (1.29) gives

(∇α′ ×∇β′) · ∇γ′ =
1

V
, (1.33)

which is the inverse volume of an (α′, β′, γ′) unit cell
or the number of (α′, β′, γ′) unit cells in a unit volume.
Thus,

α(∇α′ ×∇β′) · ∇γ′ =
α

V
= N(α′, β′, γ′), (1.34)

the number of (α′, β′, γ′) unit cells in the specific vol-
ume, i.e. in the volume occupied by a unit mass of fluid.
Then,

α(∇p×∇α) · ∇ψ = N(p, α, ψ) (1.35)
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the number of (p, α, ψ) unit cells in the specific volume
or the number of (p, α, ψ) unit cells per unit mass. The
sign of N(p, α, ψ) is positive if the vectors ∇p,∇α and
∇ψ are cyclic; otherwise it is negative. Thus, we have

(∇p×∇α) · ∇ψ = (∇ψ ×∇p) · ∇α

= (∇α×∇ψ) · ∇p
(1.36)

or

N(p, α, ψ) = N(ψ, p, α) = N(α, ψ, p), (1.37)

that is, the sign ofN(p, α, ψ) remains unchanged during
cyclic changes. Because of

a × b = −b × a, (1.38)

during non-cyclic changes, we have

N(p, α, ψ) = −N(p, ψ, α) = −N(ψ, α, p).

(1.39)
Equation (1.26) can now be written as

d

dt
(αZ · ∇ψ) =

d

dt
{α(∇× v + 2Ω) · ∇ψ}

= N(p, α, ψ),

(1.40)
which is the analytical form of the following vorticity
theorem:

The individual time change of the specific
volume multiplied by the scalar product of
the absolute vorticity vector and the gradi-
ent of a conservative property of every fluid
particle is equal to the number of (p, α, ψ)
unit cells contained in the specific volume
α.

An important special case of the foregoing new vor-
ticity theorem occurs when the conservative property ψ
can be written as a function of p and α,

ψ = ψ(p, α), (1.41)

for example, in the case when ψ is the polytropic tem-
perature (see R. Emden). Then we have

∇ψ =
∂ψ

∂p
∇p+

∂ψ

∂α
∇α, (1.42)

and, as a consequence,

N(p, α, ψ) = α
∂ψ

∂p
(∇p×∇α) · ∇p

+ α
∂ψ

∂α
(∇p×∇α) · ∇α

= 0

(1.43)

and

(∇p×∇α) · ∇p = (∇p×∇α) · ∇α = 0. (1.44)

The volume V of a (p, α, ψ) unit cell becomes infi-
nite and the cells degenerate into solenoids; the (p, α)
solenoid, the (p, ψ) solenoid, and the (ψ, α) solenoid
have the same direction at each point, a direction which,
however, can be different for different points.

The vorticity theorem (1.40) then becomes a hydro-
dynamical conservation theorem

d

dt
{α(∇× v + 2Ω) · ∇ψ} = 0, (1.45)

the derivation of which I have recently given in another
way3. The adiabatic motion in the atmosphere (as a spe-
cial case of the polytropic case) satisfies

d

dt
{α(∇× v + 2Ω) · ∇θ} = 0. (1.46)

Here,

θ = T

(

1000

p

)κ

=
1000κ

R
p1−κα (1.47)

is the potential temperature (R = gas constant, κ =
R/cp). The adiabatic special case of the new vorticity
theorem, that is (1.46), may prove to be a very useful
tool for isentropic analysis (C. G. Rossby).

Here let us discuss as an application of (1.46), the
beginning of an adiabatic vertical motion along the ver-
tical axis of expansion or contraction of a volume of
air. If the positive z axis is upward and if (x, y, z) is
a right-hand cartesian system, the horizontal (x, y) sur-
face touches the earth’s surface at latitude ϕ and

k · ∇ × v =
∂v

∂x
−
∂u

∂y
= ζ (1.48)

(ζ > 0 for cyclonic motion and ζ < 0 for anticyclonic
motion) and

k · Ω = Ω sinϕ > 0 (for the northern

hemisphere).
(1.49)

The conservation theorem (1.46) gives

d

dt

{

α(ζ + 2Ω sinϕ)
∂θ

∂z

}

= 0, (1.50)

where
d

dt
=

∂

∂t
+ w

∂

∂z
(1.51)
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because u = v = 0 at the vertical axis (however,
∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y 6= 0). From (1.50) we
obtain

d

dt
(ζ + 2Ω sinϕ) =

− (ζ + 2Ω sinϕ)

(

α
∂θ

∂z

)

−1 d

dt

(

α
∂θ

∂z

)

.

(1.52)

At the initial time, we assume ζ = 0; also in this
case, d(2Ω sinϕ)/dt = 0, so that from (1.52)

dζ

dt
= −2Ω sinϕ

(

α
∂θ

∂z

)

−1 d

dt

(

α
∂θ

∂z

)

. (1.53)

Now4,
(

α
∂θ

∂z

)

−1 d

dt

(

α
∂θ

∂z

)

=

(

∂u

∂x
+
∂v

∂y

)

θ

(1.54)

where (∂u/∂x+ ∂v/∂y)θ is the divergence on an isen-
tropic surface. Thus, from (1.53) and (1.54) it follows
that

dζ

dt
= −2Ω sinϕ

(

∂u

∂x
+
∂v

∂y

)

θ

. (1.55)

With this we get for convergence, ∂u/∂x+∂v/∂y < 0,
the development of cyclonic vorticity, while for diver-
gence, ∂u/∂x + ∂v/∂y > 0, the development of an-
ticyclonic vorticity. Since α(∂θ/∂z) = (1/ρ)(∂θ/∂z)
is a measure of the vertical stability of an air mass, we
can develop the following interpretation: In an air mass
without relative vorticity, anticyclonic (cyclonic) vortic-
ity will be developed by adiabatic vertical motion if the
stability α∂θ/∂z increases (decreases).

The vorticity equation (1.40) can also be written
in integral form. Multiplying by the mass element
ρdτ(dτ = volume element) and integrating over the to-
tal mass m =

∫∫∫

ρdτ , we obtain5

∫∫∫

ρ
d

dt
(αZ · ∇ψ) dτ =

d

dt

∫∫∫

Z · ∇ψ dτ

= Nm(p, α, ψ),

(1.56)
where Nm(p, α, ψ) is the number of (p, α, ψ) unit cells
contained in the mass m. Since Z · ∇ψ = ∇ · (ψZ),
Gauss’ theorem allows us to write (1.56) as

d

dt

∫∫

Znψ dσ = Nm(p, α, ψ), (1.56a)

where dσ is an area element of the closed surface and n
denotes the outward normal.

With a non-conservative quantityψ∗ (i.e., dψ∗/dt 6=
0) one obtains the new vorticity theorem6 in its gen-
eral form since one writes dψ∗/dt− ∂ψ∗/∂t instead of
v · ∇ψ from (1.17) on. This generalized vorticity theo-
rem takes the form

d

dt
(αZ · ∇ψ∗) = N(p, α, ψ∗) + αZ · ∇

dψ∗

dt
,

(1.57)
which can be expressed as follows:

In an ideal fluid, the individual time change
of the specific volume multiplied by the
scalar product of the absolute vorticity vec-
tor and the gradient of a field function is
equal to the number of (p, α, ψ∗) unit cells
plus the gradient of dψ∗/dt projected onto
the vector αZ.

From (1.57) one obtains, for example, the generalized
Helmholtz vorticity equation as a special case if one
gives instead of ψ∗ the components of the position vec-
tor r = (x, y, z).

The integral form of (1.57) is

d

dt

∫∫

Znψ
∗dσ = Nm(p, α, ψ)

+

∫∫

Zn
dψ∗

dt
dσ,

(1.58)

where dσ is an area element (n = outward normal) of
the volume τ . Nm(p, α, ψ∗) has the same meaning as
above; the derivation makes use of Z · ∇ (dψ∗/dt) =
∇ · [Z (dψ∗/dt)].
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6) H. Ertel, Über hydrodynamische Wirbelgleichungen.
Phys. Z. 1942.

7



2 ERTEL (1942b): A new hydrodynamical conservation principle

In a compressible fluid whose particles move poly-
tropically, the specific volume α can be expressed as a
function of the pressure p and the “polytropic temper-
ature” Θs = T (ρ0/ρ)

1/s (s = (cv − β) / (cp − cv) is
the polytropic order, β = dQ/dT the constant poly-
tropic specific heat capacity, ρ = 1/α the density, and
ρ0 = 1 g/cm3)1:

α =
1

ρ
= ψ(p,Θs). (2.1)

In general, Θs varies from particle to particle but
remains constant in time for a given particle:

dΘs

dt
=
∂Θs

∂t
+ v · ∇Θs =

∂Θs

∂t
+ vk

∂Θs

∂xk
= 0, (2.2)

the last part of which makes use of the usual summa-
tion convention. With respect to a rotating rectangular
cartesian coordinate system (xi, i = 1, 2, 3) whose ro-
tation is described by the constant rotation vector Ω, the
hydrodynamical vorticity equation2 can be written

d

dt

(

ξi
ρ

)

−

(

ξk
ρ

)

∂vi
∂xk

= −
1

ρ
∇×

(

1

ρ
∇p

)

, (2.3)

where
ξ = ∇× v + 2Ω (2.4)

denotes the absolute (relative to an inertial system) vor-
ticity vector and where v = vi (i = 1, 2, 3) denotes the
wind relative to the rotating xi system.

On account of (2.1),

∇×

(

1

ρ
∇p

)

=
∂ψ

∂Θs
∇Θs ×∇p

or in component form

[

∇×

(

1

ρ
∇p

)]

i

=
∂ψ

∂Θs
εijk

∂Θs

∂xj

∂p

∂xk
,

where εijk denotes the following tensor:

εijk =







1 for a cyclic sequence of indices
−1 for a non-cyclic sequence of indices

0 if any two indices agree

The vorticity equation (2.3) can now be written (ξ =
ξi, i = 1, 2, 3)

d

dt
(αξi) − (αξk)

∂vi
∂xk

= −α
∂ψ

∂Θs
εijk

∂Θs

∂xj

∂p

∂xk
. (2.5)

Multiplying by ∂Θs/∂xr and making use of

εijk
∂Θs

∂xi

∂Θs

∂xj

∂p

∂xk
= 0,

it follows from (2.5) that

∂Θs

∂xi

d

dt
(αξi) − (αξk)

∂vi
∂xk

∂Θs

∂xi
= 0, (2.6)

or in another form

d

dt

(

α
∂Θs

∂xi
ξi

)

− (αξi)
d

dt

(

∂Θs

∂xi

)

− (αξk)
∂vi
∂xk

∂Θs

∂xi
= 0.

(2.7)

From (2.2) we now obtain

∂

∂xi

(

dΘs

dt

)

=
d

dt

(

∂Θs

∂xi

)

+
∂Θs

∂xk

∂vk
∂xi

= 0, (2.8)

so that

ξi
d

dt

(

∂Θs

∂xi

)

= −ξi
∂Θs

∂xk

∂vk
∂xi

= −ξk
∂Θs

∂xi

∂vi
∂xk

, (2.9)

and the substitution of (2.9) into (2.7) leads to the fol-
lowing conservation principle:

d

dt

(

αξi
∂Θs

∂xi

)

=
d

dt
{α (∇× v + 2Ω)n∇nΘs}

= 0,

(2.10)
where n denotes the direction normal to the planes of
constant polytropic temperature and toward increasing
Θs. Equation (2.10) is the analytical version of the fol-
lowing conservation principle3:

In a fluid which moves polytropically, the
quantity formed by multiplying the specific
volume by the scalar product of the abso-
lute vorticity vector and the gradient of the
polytropic temperature is conserved follow-
ing individual particles.

For s = cv/(cp − cv), the polytropic temperature
reduces to the potential temperature

θ = T

(

P

p

)κ

(2.11)

(P = reference pressure, e.g. 1000 mb, and κ = R/cp)
and (2.2) becomes

dθ

dt
= 0.
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The conservation principle then becomes

d

dt
{α (∇× v + 2Ω)n∇nθ} = 0, (2.12)

which in meteorology is connected to the isentropic
analysis work of C. G. Rossby.
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3 ERTEL (1942c): On hydrodynamical vorticity equations

I. Introduction

Adopting the usual summation convention (accord-
ing to which every index occurring twice in a single term
is summed from 1 to 3) the vorticity equation for an
ideal compressible fluid reads as follows:

d

dt
(αζi) − (αζk)

∂wi
∂zk

= εijkα
∂p

∂zj

∂α

∂zk
, (3.1)

where α = ρ−1 is the specific volume, p the pressure,
zi(i = 1, 2, 3) the rectangular cartesian (inertial) coor-
dinate system, wi(i = 1, 2, 3) the wind components,
ζi = εijk (∂wk/∂zj) = (∇× w)i, and

εijk =







1 for a cyclic sequence of indices,
−1 for a non-cyclic sequence of indices,

0 if any two indices agree.

Through a generalization of (3.1) we shall now derive a
new vorticity equation.

II. General formulation of hydrodynamical vorticity
equations by means of a commutator relation

In order to treat the most general case we refer not
to the inertial system as in (3.1) but rather to a rotating
rectangular coordinate system xi, whose rotation is de-
scribed by the constant rotation vector fi(i = 1, 2, 3);
the vorticity equations then take the form

d

dt
(αξi) − (αξk)

∂vi
∂xk

= εijkα
∂p

∂xj

∂α

∂xk
(3.2)

with the individual (material) derivative operator

d

dt
=

∂

∂t
+ vk

∂

∂xk
(3.3)

and the absolute vorticity

ξi = εijk
∂vk
∂xj

+ 2fi , (3.4)

in which vi(i = 1, 2, 3) is the wind component and
εijk (∂vk/∂xj) is the vorticity relative to the rotating xi-
system. The existence of a potential for other forces is
implicit in (3.2).

Scalar multiplication of (3.2) by the gradient
∂ψ/∂xi of a hydrodynamical field function ψ (scalar,
vector or tensor component) leads easily to the form

d

dt

(

αξi
∂ψ

∂xi

)

− (αξi)
d

dt

(

∂ψ

∂xi

)

− (αξk)
∂ψ

∂xi

∂vi
∂xk

= αεijk
∂ψ

∂xi

∂p

∂xj

∂α

∂xk
,

which, through the exchange of the summation indices
in the third term on the left side, can be written

d

dt

(

αξi
∂ψ

∂xi

)

− (αξi)

{

d

dt

(

∂ψ

∂xi

)

+
∂ψ

∂xk

∂vk
∂xi

}

= αεijk
∂ψ

∂xi

∂p

∂xj

∂α

∂xk
.

(3.5)

Now, from (3.3), we have

d

dt

(

∂ψ

∂xi

)

=
∂2ψ

∂xi∂t
+ vk

∂2ψ

∂xi∂xk

=
∂

∂xi

(

dψ

dt

)

−
∂ψ

∂xk

∂vk
∂xi

,

with which (3.5) can be reduced to

d

dt

(

αξi
∂ψ

∂xi

)

−

(

αξi
∂

∂xi

)

dψ

dt

= αεijk
∂ψ

∂xi

∂p

∂xj

∂α

∂xk
,

(3.6)

9



whose right hand side has the following simple mean-
ing: Assume that the surfaces p = const, α = const and
ψ = const (with scalar value differences of 1) are con-
structed throughout space; each set of surfaces divides
space into unit layers. As long as there is no homoge-
neous relation F (p, α) = 0 (V. Bjerknes1) between p
and α, the intersections of the p and α unit layers form
(p, α) unit solenoids. The (p, α) unit solenoids are in-
tersected by the ψ unit layers, as long as ψ is not of the
form ψ = ψ (p, α). In this way a field of (p, α, ψ) unit
cells is formed. We can then interpret

εijk
∂ψ

∂xi

∂p

∂xj

∂α

∂xk
= (∇p×∇α) · ∇ψ = ±

1

V
(3.7)

as the reciprocal volume V of a (p, α, ψ) unit cell or
the number of (p, α, ψ) unit cells in a unit volume. The
proof is accomplished by integration of (∇p × ∇α) ·
∇ψ = ∇ · (ψ∇p ×∇α) over the volume of a unit cell
and application of Gauss’ integral theorem; the portion
of the surface integral over the four sides of the (p, α)
solenoids disappears, and the remainder yields a value
of +1 or −1, depending on whether the three gradients
∇p,∇α,∇ψ are oriented in the sense of a right-handed
or left-handed screw. (For a related discussion see H.
Ertel2). Thus, we can interpret

αεijk
∂ψ

∂xi

∂p

∂xj

∂α

∂xk
= α (∇p×∇α) · ∇ψ

= ±
α

V
= N (p, α, ψ)

(3.8)

as the (positive or negative) number N(p, α, ψ) of
(p, α, ψ) unit cells in the specific volume; moreover it
follows from (3.7) that

N(p, α, ψ) = N(ψ, p, α) = N(α, ψ, p)

N(p, α, ψ) = −N(α, p, ψ) = −N(ψ, α, p)

}

. (3.9)

Furthermore N(p, α, ψ) = 0 for homogeneous fluids
(∇ρ = 0) while for inhomogeneous fluids (∇ρ 6= 0)

N(p, α, ψ) = 0, if



















ψ = ψ(p)

ψ = ψ(α)

ψ = ψ(p, α)

α = α(p)



















. (3.10)

Combining (3.6) and (3.8) we obtain

d

dt

(

αξi
∂ψ

∂xi

)

−

(

αξi
∂

∂xi

)

dψ

dt
= N (p, α, ψ) ,

(3.11)

a generalized formulation for hydrodynamical vorticity
equations in the commutator relation form

(D1D2 −D2D1)ψ = N (p, α, ψ) , (3.12)

where the operators

D1 =
d

dt
=

∂

∂t
+ vk

∂

∂xk
=

∂

∂t
+ (v · ∇) (3.13)

and

D2 = αξi
∂

∂xi
= αξk

∂

∂xk
= α (∇× v + 2f) · ∇

(3.14)
are in general not commutative.

Multiplying (3.11) by the mass element ρdτ (dτ =
volume element), integrating over the volume τ contain-
ing the total mass m =

∫∫∫

ρdτ , using αρ = 1, and
noting that

∫∫∫

ρ
d

dt

(

αξi
∂ψ

∂xi

)

dτ =
D

Dt

∫∫∫

ξi
∂ψ

∂xi
dτ

=
D

Dt

∫∫∫

∂ (ψξi)

∂xi
dτ

=
D

Dt

∫∫

ψξndΩ,

(3.15)

as well as
∫∫∫

ξi
∂

∂xi

(

dψ

dt

)

dτ =

∫∫∫

∂

∂xi

(

ξi
dψ

dt

)

dτ

=

∫∫

ξn
dψ

dt
dΩ,

(3.16)

yields in the integral form (dΩ = surface element of τ ;
n = outward normal)

D

Dt

∫∫

ξnψ dΩ −

∫∫

ξn
dψ

dt
dΩ = Nm (p, α, ψ) ,

(3.17)
where Nm (p, α, ψ) =

∫∫∫

ρN (p, α, ψ) dτ is the num-
ber of (p, α, ψ) unit cells contained in the total mass m
and D

Dt denotes the individual time derivative of the en-
tire moving mass; in this derivation we note that for any
F (F = scalar, vector- or tensor-component) we have

D

Dt

∫∫∫

ρFdτ =

∫∫∫

∂ (ρF )

∂t
dτ +

∫∫

ρvnFdΩ

=

∫∫∫

ρ
dF

dt
dτ ,

(3.18)

since, by means of the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0 (3.19)
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the following transformation is possible:
∫∫∫

∂ (ρF )

∂t
dτ +

∫∫

ρvnFdΩ

=

∫∫∫ {

∂(ρF )

∂t
+ ∇ · (ρvF )

}

dτ

=

∫∫∫

ρ

{

∂F

∂t
+ (v · ∇)F

}

dτ.

Equation (3.18) with F = αξi (∂ψ/∂xi) reverts
back to (3.15) when we take into consideration the fact
that ξi represents a nondivergent vector, i.e.

∂ξi
∂xi

= 0. (3.20)

III. Conclusions

A. If one substitutes for ψ in (3.11) or (3.12) the compo-
nents xs (s = 1, 2, 3) of the position vector r of a fluid
particle, one obtains, because D1xs = vs, the vorticity
equation (3.2), which for a homogeneous and incom-
pressible fluid, turns into the Helmholtz vorticity equa-
tion in the rotating system.

B. If ψ is a conservative property of a fluid particle,

D1ψ =
dψ

dt
= 0, (3.21)

and it then follows from (3.11) or (3.12) that

d

dt

(

αξi
∂ψ

∂xi

)

= N (p, α, ψ) , (3.22)

which can be stated as follows:

For a fluid variable ψ which is individu-
ally conserved but has spatial variability,
the individual time change of the specific
volume multiplied by the scalar product of
the absolute vorticity vector with the gradi-
ent of ψ is equal to the number of (p, α, ψ)
unit cells contained in the specific volume
α.

C. If ψ is a conserved quantity and at the same time has
the form

ψ = ψ (p, α) , (3.23)

for all fluid particles, then, because

∇ψ =
∂ψ

∂p
∇p+

∂ψ

∂α
∇α,

(3.10) yields N (p, α, ψ) = 0 and (3.22) reduces to

d

dt

(

αξi
∂ψ

∂xi

)

= 0, (3.24)

which is an analytical statement of the following con-
servation principle:

For a fluid variable ψ which is individually
conserved but has a spatial variability such
that it depends only on pressure and spe-
cific volume, the individual time change of
the specific volume multiplied by the scalar
product of the absolute vorticity vector with
the gradient of ψ vanishes.

An example of a function ψ which satisfies condi-
tions (3.21) and (3.23) is the entropy of an ideal gas
which moves adiabatically; another example is the poly-
tropic temperature3 of an ideal gas which moves poly-
tropically; the conservation principle is therefore valid
for adiabatic or polytropic currents in ideal gases with
spatially variable entropy or polytropic temperature (the
earth’s atmosphere, stellar atmospheres).

D. A homogeneous fluid is defined by ∇α = ∇ (1/ρ) =
0, from which (using (3.8)) it follows that N (p.α, ψ)
vanishes for any function ψ; furthermore, N (p, α, ψ)
vanishes for any function ψ in the case of barotropy, i.e.
α = α (p). Then, there follows from (3.12) the princi-
ple:

For homogeneous fluids and for inhomoge-
neous barotropic fluids the operators D1

and D2 are always commutative; on the
other hand, for inhomogeneous baroclinic
fluids, the operators D1 and D2 are only
commutative for those functions ψ which
cause the determinant

∂ (p, α, ψ)

∂ (x1, x2, x3)
= (∇p×∇α) · ∇ψ

to vanish.
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4 ERTEL (1942d): On the relationship between the new hydrodynamic vorticity
theorem and Bjerknes’ circulation theorem

Summary

It is proven that Bjerknes’ circulation theorem is a special
case of the new hydrodynamical vorticity theorem.

1. The new vorticity theorem

Recently I derived a very general hydrodynamic
vorticity theorem [1] [2]. In its differential form it reads
as follows:

d

dt
(σW · ∇ψ) − (σW · ∇)

dψ

dt
= N(p, σ, ψ).

(4.1)
It has the form of a commutation relation

(D1D2 −D2D1)ψ = N(p, σ, ψ) (4.2)

with the generally noncommutative operators

D1 =
d

dt
=

∂

∂t
+ v · ∇ (4.3)

and

D2 = (σW · ∇) = σ(rotv + 2f) · ∇, (4.4)

where the symbols used in (4.1) through (4.4) are de-
fined as follows: σ = specific volume = 1/ρ ( ρ =
density); p = pressure; v = velocity vector relative
to a coordinate system, its rotation described through
the constant rotation vector f ; W = rotv + 2 f =
(absolute) vorticity; ψ = hydrodynamic field function
(scalar, vector, or tensor component); N(p, σ, ψ) =
σ[∇p,∇σ] · ∇ψ = number of (p, σ, ψ)-cells contained
within a specific volume σ.

For the derivation of (4.1), it has been assumed that
the fluid is ideal and that external forces acting on the
fluid possess a potential. The sign of N(p, σ, ψ) is pos-
itive or negative depending on whether the generally
nonorthogonal vectors ∇p, ∇σ and ∇ψ are oriented in
a right- or left-handed system.

One can obtain equations for each component of
vorticity by specifying in (4.1) the function ψ to have
a purely geometric interpretation. Namely, one succes-
sively sets ψ = x, ψ = y, and ψ = z in such a way that
from (4.1) the following vorticity equations result:

d

dt
(σWx) − (σW · ∇)vx = σ[∇p,∇σ]x,

d

dt
(σWy) − (σW · ∇)vy = σ[∇p,∇σ]y,

d

dt
(σWz) − (σW · ∇)vz = σ[∇p,∇σ]z,



























(4.5)

where, for instance,

[∇p,∇σ]x =
∂p

∂y

∂σ

∂z
−
∂p

∂z

∂σ

∂y
(4.6)

is the number of the isobar-isostere unit solenoids per
unit surface area normal to the +x direction. For ir-
rotational coordinates (f ≡ 0) and barotropy (p =
p(σ)), (4.5) yields the vorticity equations of E. J.
NANSON (1874); furthermore, adding incompressibil-
ity, one obtains the vorticity equations of HELMHOLTZ

(1858) [LAGRANGE (1781), CAUCHY (1827), STOKES

(1848)].
The integral form of the new vorticity theorem reads

(Ertel, l.c.):

d

dt

∫∫

WnψdΩ −

∫∫

Wn
dψ

dt
dΩ = Nm(p, σ, ψ).

(4.7)
Here,

Nm(p, σ, ψ) =

∫∫∫

ρN(p, σ, ψ)dτ

=

∫∫∫

[∇p,∇σ] · ∇ψdτ

(4.8)

is the number of (p, σ, ψ)-unit cells, m =
∫∫∫

ρdτ is the
mass (with volume τ contained in the surface Ω), and n
in (4.7) represents the outward normal. Because

[∇p,∇σ] · ∇ψ = ∇ · (ψ[∇p,∇σ]),

(4.8) can be transformed through Gauss’ integral theo-
rem into

Nm(p, σ, ψ) =

∫∫

ψ[∇p,∇σ]ndΩ. (4.9)

Then, the integral form (4.7) of the new vorticity theo-
rem changes into

d

dt

∫∫

WnψdΩ −

∫∫

Wn
dψ

dt
dΩ

=

∫∫

ψ[∇p,∇σ]ndΩ.

(4.10)

One assumes in (4.7) and (4.10) that the functions ψ,
dψ/dt, W and [∇p,∇σ] are defined on the surface Ω
and in the volume τ the first derivatives are continuous
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with respect to the spatial coordinates; the closed sur-
face Ω can itself consist of finitely many pieces of con-
tinuous tangential planes.

2. The new vorticity theorem with a discontinuous
ψ-function

Consider discontinuous ψ and dψ/dt on the surface
Σ. We denote the jump in ψ as

{ψ} = ψ+0 − ψ−0 (4.11)

and the jump in dψ/dt as

{

dψ

dt

}

=

(

dψ

dt

)

+0

−

(

dψ

dt

)

−0

(4.12)

on the surface Σ (the indices +0 and −0 specify the
function values directly above and directly below the
surface Σ, respectively). Then, we construct a cylin-
der with face F parallel to Σ and the infinitesmal height
h. Applying the integral form (4.10) of the new vortic-
ity theorem to the region F · h and taking the limit as
h→ 0, the integral over the lateral surface vanishes and
we obtain the following:

d

dt

∫∫

Wnψ−0dF −

∫∫

Wn

(

dψ

dt

)

+0

dF

+
d

dt

∫∫

W−nψ−0dF −

∫∫

W−n

(

dψ

dt

)

−0

dF

=

∫∫

ψ+0[∇p,∇σ]ndF

+

∫∫

ψ−0[∇p,∇σ]−ndF (4.13)

By the continuity of W and [∇p,∇σ] on Σ (and thus
on the subarea F of Σ)

W−n = −Wn

and
[∇p,∇σ]−n = [∇p,∇σ]n.

Then, in consideration of (4.11) and (4.12) we can write

d

dt

∫∫

Wn {ψ} dF −

∫∫

Wn

{

dψ

dt

}

dF

=

∫∫

{ψ} [∇p,∇σ]ndF.

(4.14)
Equation (4.14) represents the integral form of the new
vorticity theorem for a field function ψ and discontinu-
ous derivative dψ/dt on the surface F .

If, on the surface F , only the field function ψ be-
comes discontinuous;

{ψ} = ψ+0 − ψ−0 6= 0,

while dψ/dt, however, remains continuous:
{

dψ

dt

}

=

(

dψ

dt

)

+0

−

(

dψ

dt

)

−0

= 0,

then (4.14) reduces to

d

dt

∫∫

{ψ}WndF =

∫∫

{ψ} [∇p,∇σ]ndF.

(4.15)
By properly specifying the function ψ, Bjerknes’ circu-
lation theorem results from equation (4.15).

3. The circulation theorem of V. Bjerknes as a special
case of the new vorticity theorem

The surface Σ, which contains the surface F , di-
vides the fluid into an “upper fluid half-space” R 1 and a
“lower fluid half-space” R 2. The surface Σ, and with it
F , moves with the current, such that particles which are
in R1 always remain in R1 and particles in R2 always
remain in R2, while the common boundary Σ (with the
surface F ) of the two fluid spaces R 1 and R2 deforms
itself according to the flow. We now imagine that each
fluid particle in R 1 is assigned a same constant number
Z1; thus, this number identifies each individual fluid ele-
ment belonging to the fluid half-spaceR 1. Similarly, we
imagine all fluid particles from R 2 possessing the same
constant number Z2. The numbers Z1 and Z2 do not
characterize the fluid particles individually, because, for
instance, all fluid particles in R 1 are assigned the same
number Z1; rather, the numbers Z1 and Z2 are group
distinguisher indices that decide which of the two ap-
plicable groups of fluid particles each particle belongs
to. However, each fluid element maintains the assigned
number of Z1 or Z2 individually:

d

dt
Z1 =

d

dt
Z2 = 0.

For example, a particle initially assigned a number
Z1 and belonging to the fluid half-space R 1 cannot be-
long to R2 later and not have the assigned number Z2

with it, since the particle would have to cross the sur-
face Σ. This is impossible since the same number is al-
ways associated with the same particle, if Σ, as adopted,
moves along with the flow. However, the number (ei-
ther Z1 or Z2) changes discontinuously at the surfaces
Σ and F as |Z1 − Z2| 6= 0. The restriction of a fluid
element to either the fluid half-space R 1 or to the fluid
half-space R2 with these two characteristic numbers Z1
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Fig. 4.1

and Z2 thus forms a discontinuous ψ-field with the char-
acteristics

ψ = Z1,
dψ

dt
= 0 (in R1),

ψ = Z2,
dψ

dt
= 0 (in R2),

as well as

{ψ} = ψ+0 − ψ−0

= Z1 − Z2 6= 0 (on Σ and/or F )
(4.16)

and
{

dψ

dt

}

=

(

dψ

dt

)

+0

−

(

dψ

dt

)

−0

= 0, (on Σ and/or F )

(4.17)

where for this ψ-function the new vorticity theorem of
the form (4.15) applies. Since {ψ} = Z1 − Z2 is a
constant jump value on Σ and/or F , the equation (4.15)
immediately results in

(Z1 − Z2)
d

dt

∫∫

WndF

= (Z1 − Z2)

∫∫

[∇p,∇σ]ndF,

or through division by Z1 − Z2 6= 0,

d

dt

∫∫

WndF =

∫∫

[∇p,∇σ]ndF, (4.18)

which is the equation that represents Bjerknes’ circula-
tion theorem.

We note that
∫∫

[∇p,∇σ]ndF = N(p, σ) (4.19)

is the quantity of isobar-isostere unit solenoids in F and
∫∫

WndF =

∫∫

(rotnv + 2fn)dF

=

∮

vsds+ 2ωS

(4.20)

is the absolute circulation along the boundary of F .
Then, through Stokes’ theorem,

∫∫

rotnv dF =

∮

vs ds = C

is the circulation C relative to the Earth (rotating sys-
tem). Furthermore,

2

∫∫

fndF = 2

∫∫

ω cos(n, f)dF

= 2ωS

is twice the angular velocity ω = |f | multiplied by the
projection S =

∫∫

cos(n, f)dF of the area F onto any
plane (e.g., equatorial plane) perpendicular to the rota-
tion axis, and thus (4.18) is equivalent with the usual
version of the Bjerknes’ circulation theorem:

dC

dt
+ 2ω

dS

dt
= N(p, σ). (4.21)

Following (4.15) one obtains Lord Kelvin’s circula-
tion theorem for irrotational coordinates (f = 0) and a
barotropic fluid (p = p(σ)) [W. THOMSON (1869)]:

d

dt

∮

vsds = 0. (4.22)

In summary, from the new hydrodynamic vorticity
theorem in its differential and integral forms, all well-
known vorticity and circulation equations, respectively,
can be derived as special cases. In addition, the new
vorticity theorem results in still unknown special cases,
for example, a conservation law valid for polytropic
flows [3] (ψ = polytropic temperature), for which F.
MORÀN [4] has furnished a very appealing proof.
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5 ERTEL (1952): On the physical significance of functions arising in the Clebsch
transformation of the hydrodynamical equations

I. Geometry and kinematics of a stationary
barotropic fluid

In the Clebsch transformation of the hydrodynamic
equations [Ref. (1, 2, 3)] the wind velocity vector v is
represented by the superposition of two vectors [Ref.
(4)] involving the three scalar functions ϕ, λ, µ:

v = ∇ϕ+ λ∇µ, (5.1)

from which it follows that the functions λ and µ are re-
lated to the vorticity vector ξ = ∇ × v in accordance
with

ξ = ∇λ×∇µ. (5.2)

Thus, at each point in the flow the direction of the vor-
ticity vector is along the intersection of the two surfaces
λ = const and µ = const.

At the same time, this intersection curve itself
crosses the energy surface

H =
v2

2
+ Φ +

∫

dp

ρ
= const, (5.3)

which contains the regarded point if, as is always as-
sumed in the following, we consider the stationary flow
of an ideal barotropic fluid. In the expression (5.3) for
the total energy H per unit mass, we define v = |v|
and Φ as the potential of external forces. For all fluid
particles, the presupposed barotropy is ensured by the
existence of a single piezotropic relation ρ = ρ(p) (ρ =
density, p = pressure). The sum Φ +

∫

dp/ρ represents
the total potential energy per unit mass.

In Eulerian form fluid movement is described by the
equation

Dv

Dt
= −∇

(

Φ +

∫

dp

ρ

)

(5.4)

with the material derivative operator

v · ∇ =
D

Dt
, (5.5)

or by the equation

Dv

Dt
= (v · ∇)v = ∇

(

v2

2

)

− v ×∇× v, (5.6)

which is equivalent to (5.4) because

v × ξ = ∇H. (5.7)

Scalar multiplication of (5.7) with (5.2) results in
(x, y, z are orthogonal cartesian coordinates):

ξ · ∇H = ∇H · (∇λ×∇µ) =
∂(H,λ, µ)

∂(x, y, z)
= 0, (5.8)

an equation which shows the geometric collapse of the
surface system λ = const, µ = const, H = const, and
which leads analytically to the existence of a functional
relationship

H = H(λ, µ). (5.9)

Scalar multiplication of the momentum equation
(5.7) with the wind velocity vector v yields

v · ∇H =
DH

Dt
= 0, (5.10)

which represents the conservation law for the total en-
ergy and which expresses in a geometric sense a coinci-
dence of the streamlines with the energy surface. Vor-
ticity lines (with tangents ξ) and streamlines (with tan-
gents v) form a grid on each energy surface, whereby
the angle of intersection (the angle between v and ξ) is
determined by the equation

|v| · |ξ| · sin(v, ξ) =
∂H

∂n
, (5.11)

which follows from (5.7), with n denoting the posi-
tive normal (pointing to larger energy values) to the en-
ergy surface. If δn denotes the distance between two
neighboring energy surfaces of constant energy differ-
ence (∂H∂n δn = const), the equation

δn · |v| · |ξ| · sin(v, ξ) = const, (5.12)

which follows from (5.11), can characterize the flow
in terms of the streamline/vorticity grid on the energy
surface [Ref. (5, 6, 7)]. By the introduction of unit
volumes, formed from energy surfaces and the stream-
line/vorticity grid, these views can be formulated in an
even simpler way [Ref. (8)].

The substitution of (5.2) and (5.9) into (5.7) results
in the relation

v × (∇λ×∇µ) =
∂H

∂λ
∇λ+

∂H

∂µ
∇µ, (5.13)

or equivalently,

(v·∇µ)∇λ−(v·∇λ)∇µ =
∂H

∂λ
∇λ+

∂H

∂µ
∇µ, (5.14)

15



and the existence of Hamilton’s canonical equations

Dµ

Dt
=
∂H

∂λ
,

Dλ

Dt
= −

∂H

∂µ
(5.15)

follows [Ref. (9)] for the functions (λ, µ). The above
connection of the functions λ, µ with the energy func-
tion H now permits the conclusion that the functions
λ, µ must possess a physical interpretation that goes be-
yond their geometric-kinematic meaning (as determi-
nants of the vorticity lines); this conclusion can also be
expanded to the function ϕ in equation (5.1).

II. Transition to the Lagrangian form of hydrody-
namics

For the retrieval of the physical meaning of the func-
tions ϕ, λ, µ it is advisable to use a transformation of the
Eulerian equations (5.4) to the Lagrangian equations

∂2xj
∂t2

∂xj
∂ai

= −
∂

∂ai

(

Φ +

∫

dp

ρ

)

(i, j = 1, 2, 3).

(5.16)
Here,

xj = xj(a1, a2, a3, t) (j = 1, 2, 3) (5.17)

are the cartesian position coordinates at time t and
a1, a2, a3 (labeling coordinates) are the position coor-
dinates at time t = 0, which in a broader sense charac-
terize the motion of individual fluid particles. In (5.16)
the Einstein summation convention has been used, so
that if an index appears twice, it is summed from 1 to 3.
Together with the continuity equation

ρ
∂(x1, x2, x3)

∂(a1, a2, a3)
= ρ0 = ρ(a1, a2, a3, 0) (5.18)

and the piezotropic relation

ρ = ρ(p), (5.19)

equations (5.16, 5.18, 5.19) form a system of five equa-
tions for the three functions (5.17), the pressure p and
the density ρ.

Now let
F (

∗

x1,
∗

x2,
∗

x3) = 0 (5.20)

be the equation of a surface lying in the space, related
to the same orthogonal cartesian system xi (i = 1, 2, 3),
which serves for the determination of the position co-
ordinates (5.17); the variables with attached stars de-
note those coordinates which satisfy the surface equa-
tion (5.20). The surface may possess a continuously
variable tangent plane and be oriented in such a man-
ner that it is punctured by the streamlines, but the exact

alignment of the surface relative to the streamline sys-
tem is as yet unspecified.

The position coordinates (5.17) of a particle with
initial coordinates a1, a2, a3 must, at the time ϑ when
this particle lies on the surface F (

∗

x1,
∗

x2,
∗

x3) = 0, agree

with the coordinates
∗

x1,
∗

x2,
∗

x3, so that:

∗

xj = xj(a1, a2, a3, ϑ) (j = 1, 2, 3) (5.21)

and the equation of the surface becomes

F (x1(a1, a2, a3, ϑ),

x2(a1, a2, a3, ϑ),

x3(a1, a2, a3, ϑ)) = 0.

(5.22)

The solution of this equation for ϑ yields:

ϑ = ϑ(a1, a2, a3), (5.23)

which indicates the time at which an individually la-
beled particle a1, a2, a3 lies in the given surface F = 0.

For the following argument it is useful to define the
wind components

vj =
∂xj
∂t

(j = 1, 2, 3), (5.24)

the kinetic energy (per unit mass)

1
2

(

∂xj
∂t

)2

= 1
2
vjvj = 1

2
v2, (5.25)

and the Lagrangian function

L = 1
2
v2 −

(

Φ +

∫

dp

ρ

)

, (5.26)

and thereby rewrite the Lagrangian equations (5.16) in
the following form:

∂

∂t

(

vj
∂xj
∂ai

)

=
∂L

∂ai
. (5.27)

III. The physical meaning of the functions ϕ, λ, µ

We integrate equations (5.27) from t =
ϑ(a1, a2, a3) to time t > ϑ and obtain

vj
∂xj
∂ai

= (vj)ϑ

(

∂xj
∂ai

)

ϑ

+

∫ t

ϑ

∂L

∂ai
dt. (5.28)

Through differentiation with respect to ai it follows
from (5.21) that

∂
∗

xj
∂ai

=

(

∂xj
∂ai

)

+ (vj)ϑ
∂ϑ

∂ai
, (5.29)
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and therefore (5.28) yields:

vj
∂xj
∂ai

= (vj)ϑ
∂
∗

xj
∂ai

+
∂

∂ai

∫ t

ϑ
Ldt+

{

(L)ϑ − (vj)
2
ϑ

} ∂ϑ

∂ai
,

(5.30)

where we have used the formula

∂

∂ai

∫ t

ϑ
Ldt =

∫ t

ϑ

∂L

∂ai
dt− (L)ϑ

∂ϑ

∂ai
. (5.31)

Now, in (5.30)
∫ t

ϑ
Ldt = W (5.32)

represents the Hamiltonian action function [Ref. (10,
11, 12)], and furthermore (with v2

j = vjvj = v2)

(L)ϑ − (vj)
2
ϑ = −

{

v2

2
+

(

Φ +

∫

dp

ρ

)}

= −Hϑ = −H

(5.33)

is the negative of the total energy (per unit mass) of the
observed particle at time ϑ, which equals (Hϑ = H),
because of the conservation law (5.10), the negative to-
tal energy −H for t ≥ ϑ, so that (5.30) takes the form

vj
∂xj
∂ai

= (vj)ϑ
∂
∗

xj
∂ai

+
∂W

∂ai
−H

∂ϑ

∂ai
. (5.34)

Equation (5.34) is the result of the integration of
the Lagrangian momentum equations (5.16), or equiv-
alently (5.27), over the time interval of the movement
of a particle along a certain streamline segment. We
now consider a closely-adjoining streamline and on this
streamline a particle that at time t = 0 has the associated
labeling-coordinate ai + δai (i = 1, 2, 3). With

∂xj
∂ai

δai = δxj ,
∂
∗

xj
∂ai

δai = δ
∗

xj (5.35)

and

∂W

∂ai
δai = δW,

∂ϑ

∂ai
δai = δϑ, (5.36)

it follows from (5.34) that

vjδxj = (vj)ϑ δ
∗

xj + δW −Hδϑ, (5.37)

from which we can write

vjδxj = (vj)ϑ δ
∗

xj + δW +Hδ(t− ϑ), (5.38)

since the end time t is not varied. Now δ
∗

xj (j =
1, 2, 3) denotes the infinitesimal vector that extents from

the intersection point P (
∗

x1,
∗

x2,
∗

x3) of the first stream-
line with the surface F = 0 to the intersection point
P (

∗

x1 + δ
∗

x1,
∗

x2 + δ
∗

x2,
∗

x3 + δ
∗

x3) of the second stream-
line with the surface F = 0. We now specify the sit-
uation, which was not yet defined in section II, con-
cerning the orientation of the surface F = 0 relative
to the streamline system, by demanding that the surface
F = 0 should cut the streamline system orthogonally.
Then

(vj)ϑ δ
∗

xj = 0, (5.39)

and equation (5.38) reduces to

vj δxj = δW +HδΘ, (5.40)

where
Θ = t− ϑ(a1, a2, a3) (5.41)

denotes the running time of the particle (a1, a2, a3) from
the time ϑ(a1, a2, a3) of its intersection with the orthog-
onal surface F = 0 to the time t.

We now go back to the Eulerian form of hydro-
dynamics and select the cartesian coordinates xj (j =
1, 2, 3) as arguments, so that from (5.40) we obtain

vj δxj =

(

∂W

∂xj
+H

∂Θ

∂xj

)

δ xj , (5.42)

and then because of the free choice of δai or δxj it fol-
lows that

vj =
∂W

∂xj
+H

∂Θ

∂xj
, (5.43)

or in vector form

v = ∇W +H∇Θ. (5.44)

Hence, the task is solved, since a comparison with (5.1)
results in:

ϕ = W =

∫ t

ϑ
Ldt

=

∫ t

ϑ

{

v2

2
−

(

Φ +

∫

dp

ρ

)}

dt

= Hamilton’s action function,

(5.45)

λ = H =
v2

2
+

(

Φ +

∫

dp

ρ

)

= total energy (per unit mass),

(5.46)

µ = Θ = t− ϑ(a1, a2, a3)

= running time,
(5.47)
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with the latter measured from the time ϑ(a1, a2, a3)
of the intersection of the particle (a1, a2, a3) with the
surface that cuts the streamline system orthogonally.
Which of the infinitely many orthogonal surfaces is se-
lected as the “zero-surface” for measuring the running
time Θ is unimportant for the computation of the sta-
tionary velocity field from equation (5.44), if in the
area between two such orthogonal surfaces the hydrody-
namic momentum equations (5.4), or equivalently (5.7),
apply. It should be noted that the Hamiltonian function
W in (5.44) is to be formed for the running time interval
t− ϑ = Θ.

I will discuss elsewhere the modified interpretation
of ϕ, λ, µ of the representation (5.44) which occurs in
the case of non-stationary flows.

Scalar multiplication of equation (5.44) with the ve-
locity vector v results in the identity v2 = v2, because,
first of all, in consideration of (5.5):

v2 =
DW

Dt
+H

DΘ

Dt
(5.48)

and furthermore, according to (5.32) and (5.41):

DW

Dt
= L =

v2

2
−

(

Φ +

∫

dp

ρ

)

,
DΘ

Dt
= 1,

(5.49)
and

DW

Dt
+H

DΘ

Dt
= L+H = v2. (5.50)

The Hamiltonian canonical equations (5.15) are
identically satisfied, because, with (5.46, 5.47):

Dµ

Dt
= 1,

∂H

∂λ
= 1, (5.51)

and from (5.10, 5.46, 5.47):

Dλ

Dt
= 0,

∂H

∂µ
= 0. (5.52)

IV. Introduction of the “reduced action function”

We now introduce in (5.44) the “reduced action
function” defined by [Ref. (13)]

S = W +HΘ =

∫ t

ϑ
(L+H) dt

=

∫ t

ϑ
v2 dt =

∫ B+∆B

B
v ds,

(5.53)

where ds = v dt denotes a line element of the trajec-
tory (also a streamline in the case of stationary motion)
and ∆B is the length of this trajectory from the intersec-
tion point with the orthogonal surface F = 0 up to the

point (x1, x2, x3). Thus, from (5.44), one now obtains
the representation

v = ∇S − Θ∇H, (5.54)

or written in more detail:

v = ∇

(∫ B+∆B

B
v ds

)

−

(∫ B+∆B

B

ds

v

)

∇H,

(5.55)
where the running time (the elapsed time ) is given by

Θ =

∫ B+∆B

B

ds

v
(5.56)

(B = the length of the trajectory from ai to
∗

xi; i =
1, 2, 3.)

V. Application to asynchronous-periodical flows

In a stationary asynchronous-periodical flow field,
the fluid particles pass through closed streamlines (tra-
jectories, particle tracks) with circulation times τ or fre-
quencies ν = 1/τ that differ for trajectories on different
energy surfaces. Now the velocity vector v for a particle
on a closed orbitC of the lengthK =

∫

C ds changes pe-
riodically after the circulation time, so from (5.54, 5.55)
we have (B1 = B + ∆B):

v = ∇

(∫ B1

B
v ds

)

− Θ∇H

= ∇

(∫ B1+K

B
v ds

)

− (Θ + τ)∇H,

(5.57)

and also

0 = ∇

(∫ B1+K

B1

v ds

)

− τ∇H. (5.58)

Because

∫ B1+K

B1

v ds =

∮

v ds = Γ (5.59)

is the circulation along the closed path, one finds, after
scalar multiplication of equation (5.58) with a differen-
tial vector dr = (dx1, dx2, dx3), that the changes dH
and dΓ from an arbitrary point on an orbit lying in the
energy surface H with the circulation Γ to a point on
the energy surface H + dH = H + dr · ∇H with the
circulation Γ + dΓ = Γ + dr · ∇Γ leads, are related by

τ =
dΓ

dH
, (5.60)
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which represents the hydrodynamic generalization of a
result from the particle dynamics of single periodic mo-
tions in relationship with the Hamilton-Jacobi theory
[Ref. (14)].

VI. Relation to the hydrodynamical conservation
principle of H. Ertel and C.-G. Rossby

One can define

Ŵ =

∫ t

0

Ldt (5.61)

as the action function with lower integration limit t = 0.
Then, even for non-stationary flows, the Ertel-Rossby
[Ref. (15, 16] conservation law

d

dt

{

σξ · (v −∇Ŵ )
}

= 0, (5.62)

holds (σ = 1/ρ = specific volume) with the Eulerian
material derivative operator

d

dt
=

∂

∂t
+ v · ∇. (5.63)

For stationary flow fields, d/dt must be replaced
with the operator v · ∇ = D/Dt, so that

D

Dt

{

σξ · (v −∇Ŵ )
}

= 0, (5.64)

a result which can be easily deduced from (5.44). To
see this, we form, out of (5.44) and in accordance with
(5.41), the corresponding equations

v = ∇W −H∇ϑ, (5.65)

and
ξ = ∇× v = −∇H ×∇ϑ. (5.66)

Furthermore, through the introduction of

Ŵ =

∫ t

0

Ldt =

∫ ϑ

0

Ldt+

∫ t

ϑ
Ldt

=
∗

W +W,

(5.67)

where, in accordance with (5.23),

∗

W =

∫ ϑ

0

Ldt (5.68)

is independent of the time t > ϑ, we can rewrite (5.65)
as

v −∇Ŵ = −∇
∗

W −H∇ϑ. (5.69)

Then scalar multiplication of (5.66) with (5.69)
yields first of all:

ξ · (v −∇Ŵ ) = ∇
∗

W · (∇H ×∇ϑ)

=
∂(

∗

W,H, ϑ)

∂(x1, x2, x3)
,

(5.70)

and further through multiplication with the continuity
equation (5.18), with the aid of the multiplication rule
for the functional determinants:

ρ0 ξ · (v −∇Ŵ ) = ρ
∂(

∗

W,H, ϑ)

∂(a1, a2, a3)
. (5.71)

Through introduction of the specific volumes
(σ, σ0), one obtains the formula

σξ · (v −∇Ŵ ) = σ0
∂(

∗

W,H, ϑ)

∂(a1, a2, a3)
, (5.72)

in which the functions appearing on the right side are in-
dependent of time on each marked particle (a1, a2, a3),
so that the use of the D/Dt-operator yields the form
(5.64) of the conservation relation.

VII. Vortex lines

From (5.44) it follows that

ξ = ∇× v = ∇H ×∇Θ, (5.73)

i.e., the vorticity lines are curves which are formed by
the intersections of the running time surfaces Θ = const
with the energy surfaces H = const.

VIII. Summary

The physical meaning of the three scalar functions
(ϕ, λ, µ) appearing in the Clebsch-transformation of the
hydrodynamic equations is determined by means of the
Lagrangian for the case of stationary flow in a barotropic
fluid. The flow is determined by the functions λ = total
energy, µ = elapsed time after the fluid particle pen-
etrates a surface orthogonal to the streamline system,
and ϕ = the Hamiltonian action integral, with the in-
tegration extended over the running time. The determi-
nation of the physical meaning of these functions en-
ables in a more simple manner the derivation of a the-
orem concerning asynchronous-periodical flows as well
as the proof of the Ertel-Rossby conservation relation of
hydrodynamics.

The physical interpretation given here for the
three scalar functions appearing in the Clebsch-
transformation applies to every stationary flow field for
which there exist surfaces orthogonal to the streamline
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system. (Regarding flow regimes for which such orthog-
onal surfaces do not exist, see, for example, Prásil [Ref.
(17)]). The physical meaning of the functions ϕ, λ, µ
pointed out above can be deduced in another way by ap-
plication of Hamilton’s variational principle [Ref. (18)],
a topic I will discuss in detail elsewhere in connection
with the generalization to the non-stationary case.

It is a pleasure for me to thank my dear friend
and colleague Prof. Hilding Köhler of Uppsala, who,
in comprehensive discussions over hydrodynamic ques-
tions, encouraged me to investigate the present problem.
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6 ERTEL (1955a): Canonical algorithm for hydrodynamic vorticity equations

I. Introduction

The goal of this study is to obtain a general equa-
tion that allows derivation of all known hydrodynamic
vorticity theorems by specification of a single vector Ψ.

In 1942 H. ERTEL [Ref. 1–3] derived the formula

d

dt
(αξ · ∇ψ) = αξ · ∇

(

dψ

dt

)

+ αN(p, α, ψ), (6.1)

where
d

dt
=

∂

∂t
+ v · ∇

is the material time derivative, v the velocity vector,
ξ the vorticity vector, α the specific volume (recip-

rocal of density), p the pressure, ψ the for specifica-
tion of the available scalar function, and N(p, α, ψ) =
(∇p×∇α) · ∇ψ the number of p, α, ψ unit cells in the
unit volume.

Equation (6.1) came close to this goal, as it per-
mitted the then (1942) known vorticity theorems to be
deduced through specification of the scalar function ψ.
For instance, in equation (6.1), defining cartesian co-
ordinates x, y, z for ψ results in the vorticity equation
components for compressible, baroclinic fluids. In the
case of adiabatic or general polytropic changes of state,
if we substitute the potential or polytropic temperatures
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for ψ, such that

ψ = ψ(p, α),
dψ

dt
= 0

is valid, the resulting conservation principle that arises
from (6.1) [Ref. 4] is

d

dt
(αξ · ∇ψ) = 0

[compare also with Ref. 5–8].
In 1948 a further conservation principle [H. ERTEL

and C.-G. ROSSBY, Ref. 9, 10] for barotropic fluids
was found for all particles with the same piezotropic re-
lation α(p)

d

dt
{αξ · (v −∇W )} = 0, (6.2)

in which W =
∫ t
0
Ldt is the forcing function (L is the

Lagrange function); (6.2) cannot be considered a special
case of (6.1), and this fact suggests the generalization
shown below.

II. Canonical algorithms for hydrodynamic vorticity
equations

To obtain the general formula (the canonical algo-
rithm), which through specification of a vector Ψ yields
all known vorticity equations, we start with the hydro-
dynamic motion equations

∂v

∂t
+ ∇

(

1
2
v2

)

− v × (2Ω + ∇× v)

= −∇φ− α∇p,
(6.3)

(Ω = Earth’s rotation vector, taken to be constant, φ =
geopotential), which we write through introduction of
the absolute velocity

V = v + Ω × r (6.4)

(r = position vector from a point on the axis of rotation
to the fluid particle) and the absolute vorticity

ξ = ∇× V = ∇× v + 2Ω (6.5)

in the form

∂V

∂t
+ ∇

(

1
2
v2

)

− v × ξ = −∇φ− α∇p, (6.6)

from which, through application of the curl operation,
follows

∂ξ

∂t
−∇× (v × ξ) = N(p, α) (6.7)

with the solenoidal vector

N(p, α) = ∇p×∇α.

After easy manipulation, scalar multiplication with the
vector Ψ gives

∂

∂t
(ξ·Ψ) = ξ·

∂Ψ

∂t
+Ψ·∇×(v×ξ)+N(p, α)·Ψ. (6.8)

We have

Ψ · ∇ × (v × ξ)

= (v × ξ) · ∇ × Ψ −∇ · {Ψ × (v × ξ)}

= (v × ξ) · ∇ × Ψ −∇ · {v(ξ · Ψ) − ξ(v · Ψ)}

= (v × ξ) · ∇ × Ψ −∇ · {v(ξ · Ψ)} + ξ · ∇(v · Ψ)

= ξ · {∇(v · Ψ) − v ×∇× Ψ} − ∇ · {v(ξ · Ψ)},

so that (6.8) can be written in the form

∂

∂t
(ξ · Ψ) + ∇ · {v(ξ · Ψ)}

= ξ ·

{

∂Ψ

∂t
+ ∇(v · Ψ) − v ×∇× Ψ

}

+ N(p, α) · Ψ.

(6.9)

Since

∂Ψ

∂t
+ ∇(v · Ψ) − v × (∇× Ψ) =

DΨ

Dt
(6.10)

is that differential operation by which the substantial
change of the scalar product of the vector Ψ can be
shown [Ref. 11–12] to be a “material change,” and us-
ing a line element ds which follows the fluid, such that

d

dt
(Ψ · ds) =

DΨ

Dt
· ds, (6.11)

equation (6.9) can be written as

∂

∂t
(ξ · Ψ) + ∇ · {v(ξ · Ψ)}

= ξ ·
DΨ

Dt
+ N(p, α) · Ψ.

(6.12)

After multiplying this equation by α and using

∇ · {v(ξ · Ψ)} = v · ∇(ξ · Ψ) + (ξ · Ψ)∇ · v

and the continuity equation

α∇ · v =
∂α

∂t
+ v · ∇α =

dα

dt
, (6.13)

we obtain the sought after solution

d

dt
(αξ · Ψ) = αξ ·

DΨ

Dt
+ αN(p, α) · Ψ, (6.14)
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where on the right side one must still add the term
α(∇×F)·Ψ when the external force F is not deriveable
from a potential φ:

d

dt
(αξ · Ψ) = αξ ·

DΨ

Dt
+ α{∇ × F + N(p, α)} · Ψ.

(6.15)

In the following cases we will always assume there
exists a potential of the external force, and thus use
the form (6.14) from the established algorithms (6.14,
6.15).

III. Derivation of the hydrodynamic vorticity equa-
tion by means of the canonical algorithm by specifi-
cation of the vector Ψ

Equations (6.14) and/or (6.15) are to be understood
to be general formulae, which supply a corresponding
vorticity equation for each special choice of the vector
Ψ.

A. If, for example, we set Ψ = i (i = the unit vector
of the x-axis of a cartesian coordinate system), equation
(6.14) supplies, since equation (6.10) is

Di

Dt
= ∇vx,

the x-components of the generalized Helmholtz vortic-
ity equation for compressible and baroclinic fluids

d

dt
(αξx) = αξ · ∇vx + αNx(p, α).

One can obtain the y and z-components from equation
(6.14) by choosing Ψ = j and Ψ = k respectively (j,k
are unit vectors in the y and z directions). [Compare,
for example, Ref. 13].

B. If one sets Ψ = ∇ψ (ψ is a scalar function) in
equation (6.14) in accordance with equation (6.10), we
have

D

Dt
∇ψ =

∂

∂t
∇ψ + ∇(v · ∇ψ)

= ∇

(

∂ψ

∂t
+ v · ∇ψ

)

= ∇

(

dψ

dt

)

and equation (6.1) will result from equation (6.14).
C. If we set Ψ = v − ∇W in equation (6.14) with

the Lagrange function

L =
dW

dt
=
v2

2
−

(

φ+

∫

αdp

)

(nonrotating system Ω = 0 and autobarotropic α =
α(p)), then equation (6.10) will be

D

Dt
(v −∇W )

=
∂v

∂t
−∇

∂W

∂t
+ ∇(v2 − v · ∇W )

− v ×∇× v

=
∂v

∂t
+ ∇v2 − v ×∇× v

−∇

(

∂W

∂t
+ v · ∇W

)

=
∂v

∂t
+ ∇v2 − v ×∇× v −∇

(

dW

dt

)

=
∂v

∂t
+ ∇v2 − v ×∇× v

−∇

{

1
2
v2 −

(

Φ +

∫

αdp

)}

=
∂v

∂t
+ ∇

(

1
2
v2

)

− v ×∇× v

+ ∇

(

Φ +

∫

αdp

)

= 0

since the hydrodynamic motion equation in this case is

∂v

∂t
+ ∇

(

1
2
v2

)

− v ×∇× v

= −∇

(

Φ +

∫

αdp

)

and the conservation principle (6.2) with ξ = ∇ × v

will result from equation (6.14). In the case of a rotat-
ing system, in order to derive the conservation principle
(6.2), in which then ξ represents the absolute vorticity
2Ω+∇×v, and v is replaced by the absolute velocity,

V = v + Ω × r

and the Lagrange function [Ref. 14] is

∗

L=
d

∗

W

dt
= 1

2
v2 + Ω · (r × v)

= −

(

Φ +

∫

αdp

)

in equation (6.14) one must now use Ψ = V − ∇
∗

W .
Then according to (6.10)

D

Dt

(

V −∇
∗

W
)

= 0

based on the hydrodynamic motion equation (6.3) and
the conservation principle (6.2) [Ref. 9, 10] we have

d

dt

{

αξ · (V −∇
∗

W )
}

= 0
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with ξ = ∇× V (absolute vorticity).

IV. Summary

We have obtained a general formula (canonical al-
gorithm) that permits derivation of all presently known
hydrodynamic vorticity equations in differential form
through specification of a single vector.
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7 ERTEL (1955b): A new hydrodynamical vorticity theorem

I. Introduction

If the motion of a compressible fluid relative to the
rotating earth is written through the hydrodynamic vec-
tor equation

∂v

∂t
+ ∇

(

1
2
v2

)

− v × (2Ω + ∇× v)

= −∇Φ − α∇p,
(7.1)

where v is the velocity vector relative to the Earth, v
the absolute value of the velocity vector, Ω the constant
rotation vector of the Earth, Φ the geopotential, α the
specific volume (reciprocal of density ρ), and p the pres-
sure, then the time change of circulation relative to the
Earth

D

Dt

∮

vs ds =
D

Dt

∫∫

(∇× v)n dF (7.2)

is a substantial one, moving with the fluid, of the closed
curve (a line element of which = ds) or of the vortic-
ity flux through every material surface (an element of

which = dF , n = positive normal), which has a closed
material curve as the boundary; this time change is de-
termined from the circulation equation of V. Bjerknes
[Ref. (1–3)] through the equation

D

Dt

(∮

vs ds+ 2ΩFΩ

)

= N(p, α) (7.3)

in which

FΩ =

∫∫

cos(n,Ω) dF (7.4)

represents the projection of the surface
∫∫

dF onto any
latitudinal plane (e.g., the equatorial plane) and where

N(p, α) =

∫∫

(∇p×∇α)n dF (7.5)

represents the number of isobar-isostern unit solenoids
in the surface

∫∫

dF .
If one introduces the absolute vorticity

ξ = 2Ω + ∇× v (7.6)
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for which flux through
∫∫

dF , the following holds:
∫∫

ξn dF =

∮

vs ds+ 2ΩFΩ (7.7)

then the circulation equation of V. Bjerknes can be writ-
ten

D

Dt

∫∫

ξn dF =

∫∫

(∇p×∇α)n dF. (7.8)

The operator D/Dt which describes the time change of
∫∫

an dF for a vector a through a moving material sur-
face

∫∫

dF means explicitly the operation

D

Dt

∫∫

an dF

=

∫∫ {

∂a

∂t
+ ∇× (a × v) + v∇ · a)

}

n

dF, (7.9)

[Ref. (4,5)] which for a = ξ with ∇ · ξ = 0, immedi-
ately produces the V. Bjerknes circulation equation (7.8)
in that the curl of (7.1), with reference to (7.6), results
in

∂ξ

∂t
+ ∇× (ξ × v) = ∇p×∇α. (7.10)

The resulting vorticity theorem differs from the V.
Bjerknes circulation equation in that, in place of the flux
of the vorticity vector

∫∫

ξn dF through a material sur-
face, one looks at the generalized flux

∫∫

ψξn dF , where
ψ denotes a scalar function ψ(x, y, z, t) of the space co-
ordinates x, y, z and the time t.

II. Derivation of the new vorticity theorem

We first multiply (7.10) by ψ to obtain

ψ
∂ξ

∂t
+ ψ∇× (ξ × v) = ψ(∇p×∇α). (7.11)

Because

ψ∇× (ξ×v) = ∇× (ψξ×v)+∇ψ× (v×ξ) (7.12)

and

∇ψ × (v × ξ) = v(ξ · ∇ψ) − ξ(v · ∇ψ), (7.13)

we can write

ψ
∂ξ

∂t
+ ∇× (ψξ × v) + v(ξ · ∇ψ) − ξ(v · ∇ψ)

= ψ(∇p×∇α). (7.14)

If we write

ψ
∂ξ

∂t
=
∂(ψξ)

∂t
− ξ

∂ψ

∂t
, (7.15)

and introduce the Eulerian material derivative operator

d

dt
=

∂

∂t
+ v · ∇, (7.16)

and if we also observe that

ξ · ∇ψ = ∇ · (ψξ) (7.17)

(since ∇ · ξ = 0), the result from (7.14) is the equation

∂(ψξ)

∂t
+ ∇× (ψξ × v) + v∇ · (ψξ) − ξ

dψ

dt
= ψ(∇p×∇α). (7.18)

If the subscript n denotes the normal to a surface ele-
ment of a unbounded material surface

∫∫

dF , then from
(7.18) it follows that

∫∫ {

∂(ψξ)

∂t
+ ∇× (ψξ × v) + v∇ · (ψξ)

}

n

dF

−

∫∫

ξn
dψ

dt
dF =

∫∫

ψ(∇p×∇α)ndF, (7.19)

or, with the aid of (7.9),

D

Dt

∫∫

ψξndF −

∫∫

ξn
dψ

dt
dF

=

∫∫

ψ(∇p×∇α)ndF.

(7.20)

This equation represents the new vorticity theorem,
which hereby has been derived from the hydrodynamic
vector equation (7.1), with the introduction of the spe-
cialized scalar function ψ.

III. Special cases

From the vorticity theorem (7.20), special cases can
be derived by specification of the scalar function ψ, so
that the open surface

∫∫

dF can be made to be a closed
surface.

Examples:

a) V. Bjerknes’ circulation theorem (7.8) can be ob-
tained as a special case of the vorticity theorem (7.20)
for

ψ = const. (7.21)

b) Let us choose

ψ = T−1

(

p

p0

)κ

= θ−1 (7.22)
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(θ is the potential temperature, p0 is the reference pres-
sure, γ = cp/cv, κ = (γ− 1)/γ) and consider adiabatic
flow so that

dθ

dt
= 0. (7.23)

From (7.20) we then obtain

D

Dt

∫∫

ξn
θ
dF =

∫∫

θ−1(∇p×∇α)ndF. (7.24)

The right hand side of this equation can be written as
the flux of a solenoidal vector, since it follows from the
equation of state for an ideal gas (pα = RT ,R = cp−cv
is the gas constant, T is the absolute temperature) that

θ =
pκ0
R
p

1

γα, (7.25)

and therefore that

θ−1(∇p×∇α) = ∇

(

p

p0

)κ

×∇(cp lnα). (7.26)

Consequently we have

D

Dt

∫∫

ξn
θ
dF

=

∫∫ {

∇

(

p

p0

)κ

×∇(cp lnα)

}

n

dF (7.27)

with the solenoidal vector

∇

(

p

p0

)κ

×∇(cp lnα) = ∇

(

1

θ

)

×∇(cpT ). (7.28)

Also the choice ψ = θ (instead of ψ = θ−1) gives
the flux of a solenoidal vector for the right hand side
of (7.20).

c) Generally, the following holds

D

Dt

∫∫

J ξn dF =

∫∫

{∇f(p) ×∇g(α)}n dF

(7.29)
for every hydrodynamic invariant J (dJ/dt = 0) that
allows itself to be represented in the form

J =
df(p)

dp

dg(α)

dα
(7.30)

(for example the polytropic temperature during poly-
tropic changes of state).

Suppose one chooses in the vorticity theorem (7.20)
a closed surface S =

∫∫

ds for
∫∫

dF ; this surface en-
closes the volume V =

∫∫∫

dV . Since the application of

Gauss’ theorem yields
∫∫

ψ(∇p×∇α)n dS =

∫∫∫

(∇p×∇α) · ∇ψ dV

= N(p, α, ψ),

(7.31)

the following equation results:

D

Dt

∫∫

ψξn dS−

∫∫

ξn
dψ

dt
dS = N(p, α, ψ). (7.32)

This is the integral form of the vorticity equation de-
rived by the author in 1942 [Ref. (6)], where N(p, α, ψ)
denotes the number of (p, α, ψ) unit cells enclosed in
the volume V . On the other hand, the vorticity theorem
(7.20) can be understood as the generalization of (7.32)
for the case of an unbounded surface integration.

IV. Summary

A hydrodynamic vorticity theorem in a form com-
patible with the fundamental equation of hydrodynam-
ics for compressible fluids has been derived, from which
integral vorticity equations, for example the Bjerknes
circulation theorem, can be represented in a simple form
through specification of a scalar function.
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[6] H. ERTEL, Über hydrodynamische Wirbelsätze.
Physikalische Zeitschrift, 1942, 526–529.

25



8 ERTEL (1956): Orthogonal trajectory systems in stationary two-dimensional
flow of an ideal incompressible fluid

I. Remarks on methods for the transformation of the
hydrodynamic equations

A planar flow field is characterized by the property
that the flow of each and every fluid particle evolves in
a plane and the flow in each and every plane is iden-
tical. The entire flow field is determined by the flow
in one plane, say the x, y-plane [M. LAGALLY, L. M.
MILNE-THOMSON, Ref. (1,2)].

In the absence of exterior forces and for stationary
motion of an ideal fluid, the Eulerian hydrodynamical
equations take the matrix form









∂vx
∂x

∂vx
∂y

∂vy
∂x

∂vy
∂y









(

vx
vy

)

= −
1

ρ









∂p

∂x

∂p

∂y









(8.1)

where vx, vy are the wind components, p the pressure,
and ρ the density.

The flow is assumed to be incompressible, so that
the trace of the 2 × 2 matrix of the velocity derivatives

M =





Mxx Mxy

Myx Myy



 =









∂vx
∂x

∂vx
∂y

∂vy
∂x

∂vy
∂y









(8.2)

vanishes, i.e.,

Mxx +Myy =
∂vx
∂x

+
∂vy
∂y

= 0 (8.3)

(continuity equation).
From the matrix M and its transpose

M ′ =









∂vx
∂x

∂vy
∂x

∂vx
∂y

∂vy
∂y









(8.4)

we can obtain the antisymmetric matrix

M −M ′ =







0
∂vx
∂y

−
∂vy
∂x

∂vy
∂x

−
∂vx
∂y

0







=

(

0 −ζ
+ζ 0

)

(8.5)

where

ζ =
∂vy
∂x

−
∂vx
∂y

(8.6)

is the vorticity. We now utilize a common transforma-
tion of the hydrodynamical equations through the sub-
stitution

Mxy =
∂vx
∂y

=
∂vy
∂x

− ζ,

Myx =
∂vy
∂x

=
∂vx
∂y

+ ζ

(8.7)

for the off-diagonal elements of the matrix of velocity
derivatives (8.2); this substitution with v2 = v2

x + v2
y

yields


















∂

∂x

(

v2

2

)

− vyζ = −
1

ρ

∂p

∂x
,

∂

∂y

(

v2

2

)

+ vxζ = −
1

ρ

∂p

∂y

(8.8)

for the hydrodynamical equations.
In the following discussion we make use of another

transformation and note that the matrix elements on the
main diagonal in (8.2), i.e., the elements

Mxx =
∂vx
∂x

, Myy =
∂vy
∂y

,

can be written, with the aid of the continuity equation
(8.3), as

Mxx = −
∂vy
∂y

, Myy = −
∂vx
∂x

, (8.9)

so that the matrix (8.2) becomes

M =









−
∂vy
∂y

∂vx
∂y

∂vy
∂x

−
∂vx
∂x









. (8.10)

II. Orthogonality of isogons and isobars for non-
unidirectional, stationary, planar flow of an ideal, in-
compressible fluid

For inhomogeneous flow fields the matrices (8.2)
and (8.10) are not null-matrices, and with the matrix
(8.10) the hydrodynamical momentum equations are















−vx
∂vy
∂y

+ vy
∂vx
∂y

= −
1

ρ

∂p

∂x
,

+vx
∂vy
∂x

− vy
∂vx
∂x

= −
1

ρ

∂p

∂y
.

(8.11)
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We define the direction of the wind vector v =
(vx, vy) as the angle with respect to the positive x-axis,
so that

vx = v cos θ, vy = v sin θ,
vy
vx

= tan θ. (8.12)

The wind direction field θ(x, y) can be illustrated
through the isolines θ(x, y) = const (= c1, c2, · · · ),
which are points with equal values of wind direction;
these isolines can be constructed graphically from the
streamline field [see, for example, J. W. SANDSTRÖM,
W. HORT, F. E. RELTON, Ref. (3–5)]. In dynamic me-
teorology the lines θ(x, y) = const are referred to as
“isogons.” We exclude the special case in which the
function θ(x, y) has the same value at all field points,
and hence only treat the case of non-unidirectional flow
fields.

We now have














−vx
∂vy
∂y

+ vy
∂vx
∂y

= −v2
x

∂

∂y

(

vy
vx

)

= −v2 ∂θ

∂y
,

+vx
∂vy
∂x

− vy
∂vx
∂x

= +v2
x

∂

∂x

(

vy
vx

)

= +v2 ∂θ

∂x
,

(8.13)
and the hydrodynamical momentum equations (8.11)
take the form:















+ρv2 ∂θ

∂y
= +

∂p

∂x
,

−ρv2 ∂θ

∂x
= +

∂p

∂y
,

(8.14)

so that
∂θ

∂x

∂p

∂x
+
∂θ

∂y

∂p

∂y
= 0, (8.15)

and we have the following result:
In the planar flow of an ideal incompressible fluid

the isogons and isobars form an orthogonal trajectory
system in the stationary case.

In accordance with its derivation, this statement ap-
plies to both planar rotational flows as well as planar
potential flows, for the acceptance of the existence of
a velocity potential was not required; exempted from
the statement are the the singular points of the function
θ(x, y) [R. ZURMÜHL, Ref. (6)].

III. Orthogonality of isogons and isolines of poten-
tial energy when there exists a potential for external
forces

If X,Y denote the components of the external force

(X,Y ) = −

(

∂

∂x
,
∂

∂y

)

Φ,

expressed in terms of the potential Φ, (8.15) changes to
a form in which the pressure p is replaced by the poten-
tial energy Epot = ρΦ + p:

∂θ

∂x

∂Epot

∂x
+
∂θ

∂y

∂Epot

∂y
= 0, (8.16)

and the hydrodynamical momentum equations (8.14)
can be written as















ρv2 ∂θ

∂y
=

∂

∂x
(ρΦ + p),

−ρv2 ∂θ

∂x
=

∂

∂y
(ρΦ + p).

(8.17)

IV. Orthogonality of isogons and isotachs in station-
ary, two-dimensional, potential flow

Suppose there exists a potential flow:

(vx, vy) =

(

∂

∂x
,
∂

∂y

)

ϕ, ζ ≡ 0, (8.18)

so that in the stationary case the Bernoulli equation is

ρ
v2

2
+ Epot = ρ

v2

2
+ ρΦ + p = const. (8.19)

Eliminating Epot from (8.16) with the aid of the
Bernoulli equation, we obtain

∂θ

∂x

∂v

∂x
+
∂θ

∂y

∂v

∂y
= 0. (8.20)

The curves v(x, y) = const (= v1, v2, · · · ) are the
isotachs. In non-unidirectional, stationary, planar, po-
tential flow of an ideal incompressible fluid the isogons
and isotachs must form an orthogonal trajectory system.

V. Unidirectional, planar, stationary potential flow

In the case that θ(x, y) = const in the entire field,
then ∂θ/∂x = ∂θ/∂y = 0, so that the hydrodynamical
equations (8.17) yield: ρΦ + p = const; with the aid of
the Bernoulli equation (8.19), it follows that: v = const,
and the potential flow is homogeneous.

VI. Conclusions

The construction of isogons for non-unidirectional,
stationary, planar flow of an ideal incompressible fluid is
made possible when only the streamlines (and not nec-
essarily the streamfunction) are given, so that the iso-
gons are oriented perpendicular to

a) the pressure field, if no other force field exists,
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b) the potential energy field, if another force field
exists,

c) the isotach field, if a potential flow exists,
so that the isolines in each case form an orthogonal tra-
jectory system with the isogons.

For a given streamfunction, the streamlines are de-
termined; then the isolines in each case (i.e., pressure,
potential energy, or isotachs) can also be determined
because in each case their gradient is completely deter-
mined.
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9 ERTEL (1957): A general relationship between wind velocity and the hydrody-
namical field intensity in the atmosphere

Summary

A general relationship between the atmospheric wind ve-
locity and the hydrodynamical field intensity can be obtained
if we take into account that the acceleration vector is always
located in the osculator plane of the trajectory. The relation-
ship is easily obtained from the dynamical condition in the
direction of the binormal unit vector of the moving trihedron.
The same equation is obtained for the geostrophic wind, the
only difference being the meaning of the two unit perpendic-
ular vectors. This equation is valid for all frictionless atmo-
spheric flows.

1. Introduction

In atmospheric mechanics, or dynamical meteorol-
ogy, which studies the movements of the atmosphere’s
air masses, we deal fundamentally with the velocity
field (v). If the air moves without friction, this field
is related to the vectorial field F of the forces of gravity
(−∇Φ) and pressure gradient (− 1

ρ∇p) per unit mass,
that is,

F = −∇Φ −
1

ρ
∇p,

through the Coriolis force

C = 2v × ω

and the acceleration

dv

dt
=

(

∂

∂t
+ v · ∇

)

v

of the particles.

Euler’s equations of motion, which can be summa-
rized in a single vectorial equation

(

∂

∂t
+ v · ∇

)

v − 2v × ω = −∇Φ −
1

ρ
∇p,

yield the general relationship between the three vectors,
dv/dt, C, and F. Since F = 0 (null vector) should be
the equilibrium condition, that is, the case of a hydro-
static field, the force F 6= 0 is referred to as the intensity
of the hydrodynamical field (in German: hydrodynamis-
che Feldstärke).

In order to close the system of equations that deter-
mine the atmospheric motion, we must add the continu-
ity equation and a thermodynamical relationship. How-
ever, we know that this system of equations is among the
most complex systems in theoretical physics, because
the equations are nonlinear differential equations.

Nevertheless, it so happens in dynamical meteorol-
ogy that a number of air motion problems can be stud-
ied in an approximate sense, if one assumes that the ac-
celeration is always small. An example of this is the
geostrophic wind (see, for instance, P. CARRASCO, Me-
teorologı́a, Ḿexico 1945, pages 175–176; D. BRUNT,
Climatologı́a, Buenos Aires-Ḿexico 1948, pages 194–
202; S. PETTERSSEN, Introducción a la Meteorologı́a,
Buenos Aires-México 1951, pages 156–161).

2. The problem

Let us consider a motion in the horizontal plane.
We fix a rectangular coordinate system (x, y, z), whose
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positive z-axis is vertical. Then v = (vx, vy, 0). We
assume that in the fundamental hydrodynamical equa-
tions the acceleration can be neglected when compared
to the Coriolis force. Now the horizontal motion can be
expressed as

−2ωzvy = Fx, +2ωzvx = Fy,

if we adopt the right-hand rule as the direct or positive
trihedron. Let us rotate the coordinate axes trihedron
around the +z axis until the +x axis coincides with the
wind direction, that is,

v = (vx = v = |v|, 0, 0).

As a result, we have

v =
1

2

Fy
ωz
,

which is nothing but the well-known formula for the
geostrophic wind velocity, where ωz = |ω| cos(π/2 −
ϕ) = ω sinϕ is the vertical component of the Earth’s
angular velocity at the northern latitude ϕ. Using the
unit vectors j,k in the y, z directions, respectively, we
can write the previous equation as

v =
1

2

(F · j)

(ω · k)
.

Now let us consider the following problem. Given
the intensity of the hydrodynamic field F at a certain
point in the atmosphere (and we have yet to introduce
in the calculation a rigorous treatment of the influence
of acceleration) is it possible to determine the wind ve-
locity v = |v| at that point with the help of an equation
that is similar to the equation obtained for the case of
the geostrophic wind?

3. Solution

First we need to study in more detail the acceleration
in Euler’s equations of motion. The d/dt operator rep-
resents a derivative following the motion of the particle
trajectories, and if ds = vdt is an infinitesimal distance
along the trajectory, then

dv

dt
= v

dv

ds
.

Moreover, let T be the unit tangent in the direction of
the motion of the particle, that is, v = Tv. Euler’s vec-
tor equation of motion is therefore

T
d

ds

(

v2

2

)

+ v2dT

ds
+ 2vω × T = F.

After a scalar product of this equation by the following
vectorial product

L =
T ×

dv

ds

v

∣

∣

∣

∣

dT

ds

∣

∣

∣

∣

=
T ×

dT

ds
∣

∣

∣

∣

dT

ds

∣

∣

∣

∣

we obtain
2v(ω · M) = (F · L),

where M is the vector

M = T × L.

We then effectively have the relationship

v =
1

2

(F · L)

(ω · M)

which has the form of the solution needed because, as
we will show below, the right hand side of the equation
obeys all of the conditions established. This is exactly
the same equation as the equation for the geostrophic
wind. The only difference stems from the meaning of L

and M.
It is immediately apparent that L is in the normal

plane, that is, in the plane perpendicular to T. M is also
in this plane:

L · T = 0, M · T = 0.

Moreover L is orthogonal to M = T × L:

L · M = 0,

and both are unit vectors:

|L| = |M| = 1.

Finally, we are ready to find the directions of the
unit vectors L and M in the normal plane with the help
of a moving trihedron of three perpendicular unit vec-
tors, namely: the unit tangent T, the binormal unit B

and the principal normal unit N. Defining T, B, N as
the right-handed trihedron, we can write

T = B × N, B = N × T, N = T × B,

and introducing a well-known equation from the differ-
ential geometry

dT

ds
= −κN
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where κ is the trajectory curvature, we have
∣

∣

∣

∣

dT

ds

∣

∣

∣

∣

= κ, T ×
dT

ds
= κB,

that is
L = B and M = N

(see, for instance, D. J. STRUIK, Geometrı́a Diferencial
Clássica, Madrid 1955, pages 17–23; F. J. GUILLÉN,
Cálculo Tensorial, México 1957, pages 34–38).

The general relationship between the wind velocity
and the intensity of the hydrodynamical field in the at-
mosphere becomes:

v =
1

2

(F · B)

(ω · N)

or, if we introduce cartesian coordinates,

v =
1

2

(FxBx + FyBy + FzBz)

(ωxNx + ωyNy + ωzNz)

from which we see that the geostrophic wind is a special
case, for instance,

B = (0, 1, 0), N = (0, 0, 1).

4. Additional considerations

It therefore seems that the real wind velocity is de-
termined by six parameters, the components of the vec-
tors B = (Bx, By, Bz) and N = (Nx, Ny, Nz). It is
important to point out that there are three relationships
among them:

B2
x +B2

y +B2
z = 1,

N2
x +N2

y +N2
z = 1,

BxNx +ByNy +BzNz = 0,

and therefore only three of those parameters are com-
pletely independent, a number which is equal to the
number of components of the acceleration dv/dt =
(dvx/dt, dvy/dt, dvz/dt). It seems at first sight that the
set of three independent parameters can be considered
directly equivalent to the acceleration. However, a more
careful review will show that this is not the case. We
will write the general relationship as

v =
1

2

(F · B)

(ω · N)
=

1

2

F ·

(

T ×
dv

dt

)

ω ·

(

T ×

(

T ×
dv

dt

)) .

This equation yields a relationship between those mag-
nitudes; however, according to a kinematics theorem,
the three vectors dv/dt, T and N are linearly depen-
dent:

dv

dt
= T

(

dv

dt

)

T

+ N

(

dv

dt

)

N

,

that is, the acceleration vector is always located in the
osculating plane of the trajectory (see, for instance, C.
Mataix Aracil, Cálculo Vectorial Intrı́nseco, Third Edi-
tion, Madrid 1951, page 49). Combined with the equa-
tion for v, this last equation produces

v =
1

2

F · (T × N)

ω · (T × (T × N))
=

1

2

(F · B)

(ω · N)
=

1

2

FB
ωN

.

The scalar factor (dv/dt)N can be omitted. We
therefore obtain an equation that does not explicitly con-
tain the acceleration, but that besides F and ω, only con-
tains purely geometric quantities.

Taking into consideration the relationships between
the unit vectors T, B, and N, we easily recognize that
the following equations are also valid:

v =
1

2

(F · (N × T))

(ω · N)
,

v =
1

2

(F · B)

(ω · (T × B))
.

Each equation in these two cases contains two of the
three independent parameters; T determines the normal
plane. For instance, if we fix the normal plane, that is,
the vector T through its two independent components,
we will still need a direction in this normal plane to de-
termine B or N.

5. Simpler solution

We’ll finish with a second demonstration:
If we now write Euler’s equation of motion as fol-

lows:

T

(

dv

dt

)

T

+ N

(

dv

dt

)

N

+ 2v(ω × T) = F

and take the scalar product with the binormal unit vector
B, we find

2v (ω×T) ·B = 2vω · (T×B) = 2v (ω ·N) = F ·B.

As seen above, this equation of motion in the binor-
mal unit direction of the moving trihedron yields also
the relationship between the wind velocity and the in-
tensity of the atmospheric hydrodynamic field.
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10 ERTEL (1960a): Theorem on hydrodynamical material invariants

Summary

The following theorem is easily demonstrated: The prod-
uct of the specific volume by the functional determinant of
three material invariants with respect to orthogonal cartesian
spatial coordinates is also a material invariant.

1. Symbols

We use tensor notation and omit the summation
symbol for indices that appear twice. We define the fol-
lowing symbols: xi (i = 1, 2, 3) = rectangular carte-
sian coordinates, vi (i = 1, 2, 3) = components of the
fluid velocity, δ jk (j, k = 1, 2, 3) = substitution tensor,
(· · · ),j = partial derivative of (· · · ) with respect to xj ,
d(· · · )/dt = ∂(· · · )/∂t + vj(· · · ),j = material deriva-
tive of (· · · ), σ = 1/ρ = specific volume (ρ = density)
of the fluid, and t = time.

2. Concept of a material invariant

Let f(x1, x2, x3, t) be a property of a fluid particle;
then

df

dt
=

(

v1
∂

∂x1

+ v2
∂

∂x2

+ v3
∂

∂x3

)

f +
∂f

∂t
(10.1)

is called a material derivative because df/dt measures
the variation of f as a function of time following the
fluid particle. If F (x 1, x2, x3, t) is conserved following
the parcel, then dF/dt = 0 and therefore we can write

(

v1
∂

∂x1

+ v2
∂

∂x2

+ v3
∂

∂x3

)

F = −
∂F

∂t
,

or simply

vjF,j = −
∂F

∂t
, (10.2)

using tensor notation.
In this case, F is conserved along the trajectory of a

moving particle. For this reason F is also called a mate-
rial constant. There are many applications for a material
invariant in meteorology and oceanography.

3. A theorem on material invariants

Let Jk (k = 1, 2, 3) be three material invariants.
The Jacobian (k = subindex of rows, j = subindex of
columns)

J = |Jk,j | =
∂(J1, J2, J3)

∂(x1, x2, x3)
(10.3)

is not equal to zero, that is, J1, J2, and J3 are indepen-
dent.

Moreover, it is necessary that the following three
conditions are met:

vjJk,j = −
∂Jk
∂t

. (10.4)

Denote the cofactor of Jk,i in J as
∗

Jki. Using this
notation we have

∗

JkiJk,j = δijJ =

{

J, if i = j,

0, if i 6= j,
(10.5)

and as solutions of the system of equations in (10.4),
with vi (i = 1, 2, 3) as unknowns and using (10.5), we
obtain:

Jvi = −
∂Jk
∂t

∗

Jki. (10.6)

The divergence of the vector Jvi is then given by

(Jvi),i = −
∂J

∂t
, (10.7)

because
(
∗

Jki
)

,i
=

∗

Jki,i ≡ 0 (10.8)

for all k; moreover

∂Jk,i
∂t

∗

Jki =
∂J

∂t
(10.9)

is the derivative of the determinant J with respect to t.
From the continuity equation

dσ

dt
= σvi,i (10.10)

equation (10.7) can be written as

σ

(

∂J

∂t
+ viJ,i

)

+ J
dσ

dt
= 0, (10.11)

which can be rewritten as:

d

dt
(σJ) =

d

dt

{

σ
∂(J1, J2, J3)

∂(x1, x2, x3)

}

= 0. (10.12)

Therefore, the following theorem is verified:
The product of the specific volume by the functional

determinant of three material invariants with respect to
orthogonal cartesian spatial coordinates is also a mate-
rial invariant.

Analogous results are obtained in the general
case of n material derivatives Jk(x1, x2, x3, ..., xn, t)
(k = 1, 2, 3, ..., n) with n orthogonal cartesian co-
ordinates of an n-dimensional space, assuming that
J1, J2, J3, . . . , Jn are independent.
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4. Meteorological examples

Isentropic motion in vertical columns of the at-
mosphere is an example of an application of equation
(10.7). Assume an isentropic air motion in the vertical
direction, x3 = z. All particles move parallel to the ver-
tical axis without lateral expansion or contraction and
without change of specific entropy, S, so that there are
three material invariants

J1 = x1 = x,

J2 = x2 = y,

J3 = S(x, y, z, t).











(10.13)

These functions are independent in the region of
study. The functional determinant (10.3) can be written
as

J =
∂(x, y, S)

∂(x, y, z)
=
∂S

∂z
, (10.14)

and equation (10.12) gives the well-known result

d

dt

(

σ
∂S

∂z

)

= 0. (10.15)

A so-called Margules material invariant, σ(∂S/∂z),
appears in this equation.

The following equality is sometimes convenient

J =
∂(J1, J2, J3)

∂(x1, x2, x3)
= (∇J1 ×∇J2) · ∇J3 (10.16)

(see, for example, ERTEL [1], MORÁN SAMANIEGO

[2]).
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11 ERTEL (1960b): Relation between a material derivative and a given spatial
divergence in hydrodynamics

Summary

We derive a transformation that shows how the material
derivative of any function can be expressed as a spatial diver-
gence multiplied by the fluid’s specific volume. This relation-
ship shows, for instance, the different forms of the continuity
equation (Euler, Lagrange) as special cases.

1. Symbols, notation, and fundamental concepts

We define the following symbols: xi (i = 1, 2, 3) =
rectangular cartesian coordinates, vi (i = 1, 2, 3) =
components of the fluid velocity, t = time, σ = spe-
cific volume, ρ = density (= 1/σ), Fi (i = 1, 2, 3) =
components of the external force, pij (i, j = 1, 2, 3) =
pressure tensor, and δij (i, j = 1, 2, 3) = substitution
tensor.

In order to simplify the notation we use the summa-
tion rule of tensorial calculus in which the use of index
repetition indicates summation. Indices that are not re-
peated will take on values of 1,2,3 successively so that
there is a total of three different equations.

It is convenient to write ψ,j instead of ∂ψ/∂xj .
With this notation Θk,j = ∂Θk/∂xj , pij,j = ∂pij/∂xj ,
etc. (see, for instance, VOGEL [4]).

Let ψ = ψ(x1, x2, x3, t) be a differentiable function
whose physical meaning is the component of a tensor of

any order. The operator

∂ψ

∂t
+ vjψ,j =

dψ

dt
(11.1)

is the so-called material derivative of ψ with respect to
t. We know that (11.1) represents a derivative following
the motion of a particle which at time t is located at xj
and has velocity dxj/dt = vj (j = 1, 2, 3).

Introducing the continuity equation

dσ

dt
= σvj,j (11.2)

we can write the material derivative in (11.1) as

dψ

dt
= σ

{

(ρvjψ),j +
∂(ρψ)

∂t

}

(11.3)

We see that the material derivative is here expressed as
a four-dimensional divergence (a spatio-temporal diver-
gence) multiplied by the fluid’s specific volume. Equa-
tion (11.3) is often found in conservation principles of
theoretical physics (see, for instance, SCHRÖDINGER

[3]).
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Euler’s fundamental hydrodynamical equations
contain both material derivatives and spatial diver-
gences:

dvi
dt

+ σ pij,j = Fi. (11.4)

The continuity equation (11.2) also has this property.
It is therefore convenient to express all material deriva-
tives as spatial divergences. In the next section, we will
show that this transformation is possible with the help
of functional determinants (Jacobian and Hessian).

2. Transformation of the material derivative to a spa-
tial divergence

After the appropriate choice of three functions

Θk = Θk(x1, x2, x3, t) (k = 1, 2, 3)

it is possible to express a function ψ = ψ(x1, x2, x3, t)
as the Jacobian J = J(Θ1,Θ2,Θ3) multiplied by the
specific volume, as follows:

ψ = σ
∂(Θ1,Θ2,Θ3)

∂(x1, x2, x3)
= σ |Θk,j | = σJ (11.5)

(k = subindex of rows, j = subindex of columns).
This kind of representation is always possible when
Θ1,Θ2,Θ3 are independent, that is:

J = |Θk,j | 6= 0. (11.6)

If we designate as
∗

Θkj the adjoint determinant of
Θk,j in J = |Θk,j |, a well-known property of the deter-
minants tells us that

∗

ΘkiΘk,j = δijJ. (11.7)

Consider now the identities

∂Θk

∂t
+ vjΘk,j =

dΘk

dt
. (11.8)

If we multiply these equations by
∗

Θki, and sum over
all k, use of (11.7) gives

∂Θk

∂t

∗

Θki + viJ =
∗

Θki
dΘk

dt
. (11.9)

From (11.9) we’d like to obtain the spatial diver-
gence; we then have

∂J

∂t
+ (viJ),i =

(

∗

Θki
dΘk

dt

)

,i

(11.10)

because for every k

(
∗

Θki

)

,i
=

∗

Θki,i = 0, (11.11)

while
∂Θk,i

∂t

∗

Θki =
∂J

∂t
(11.12)

is nothing but the partial derivative of the functional de-
terminant J with respect to t.

Considering the continuity equation (11.2) we then
have, according to (11.10):

σ

(

∂J

∂t
+ viJ,i

)

+ J
dσ

dt
= σ

(

Θkj
dΘk

dt

)

,j

(11.13)

and taking equation (11.1) into account, we obtain the
needed transformation:

d

dt

{

σ
∂(Θ1,Θ2,Θ3)

∂(x1, x2, x3)

}

= σ

(

∗

Θkj
dΘk

dt

)

,j

(11.14)
or

dψ

dt
= σ

(

∗

Θkj
dΘk

dt

)

,j

(11.15)

if we remember that ψ is given by (11.5).
Through this relationship it is possible to trans-

form the material derivative of a function ψ =
σJ(Θ1,Θ2,Θ3) into a spatial divergence. This trans-
formation is also valid for a Euclidian space of any di-
mension.

It is important to point out that in (11.15) the set of
functions Θk (k = 1, 2, 3) contains two arbitrary func-
tions, providing ∞2 ways of representation if we ex-
press ψ/σ using the Jacobian in (11.5). If we assume
that ψ/σ, Θ1 and Θ2 are given, then equation (11.5)
determines Θ3 through a first order partial differential
equation.

For clarity let us consider the function ψ = σ, and
Θ1 = x1, Θ2 = x2. Then, equation (11.5) requires that

Θ3 = x3. Therefore,
∗

Θkj = δjk, and equation (11.14)
yields

dσ

dt
= σ

(

δjk
dxk
dt

)

,j

= σ vj,j (11.16)

that is, the transformation in (11.15) yields Euler’s con-
tinuity equation.

If we assume that dΘk/dt is a function of Θ1,Θ2

and Θ3, we can establish that

(

∗

Θkj
dΘk

dt

)

,j

= J
∂

∂Θj

(

dΘj

dt

)
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in virtue of

∗

Θkj

(

dΘk

dt

)

,j

=
∗

ΘkjΘi,j
∂

∂Θi

(

dΘk

dt

)

= δikJ
∂

∂Θi

(

dΘk

dt

)

= J
∂

∂Θj

(

dΘj

dt

)

,

so that equation (11.14) becomes the equivalent form:

d

dt
ln

{

σ
∂(Θ1,Θ2,Θ3)

∂(x1, x2, x3)

}

=
∂

∂Θj

(

dΘj

dt

)

,

(11.14a)
which is advantageous when two functions (Θ1 and Θ2,
for instance) from the set Θj (j = 1, 2, 3) are canon-
ically conjugate variables. (For further information on
canonically conjugate variables in hydrodynamics see
LAMB [2]). If, moreover, Θ3 is a material invariant, that
is dΘ3/dt = 0, we have

∂

∂Θj

(

dΘj

dt

)

= 0, (11.17)

and therefore, from (11.14a):

d

dt

{

σ
∂(Θ1,Θ2,Θ3)

∂(x1, x2, x3)

}

= 0 (11.18)

that is

σ
∂(Θ1,Θ2,Θ3)

∂(x1, x2, x3)
= material invariant. (11.19)

Our transformation also includes the following the-
orem: If the three independent functions Θ1,Θ2, and
Θ3 are individual invariants:

dΘ1

dt
=
dΘ2

dt
=
dΘ3

dt
= 0 (11.20)

the product of the specific volume by the functional de-
terminant of Θ1,Θ2 and Θ3 with respect to the rectan-
gular cartesian coordinates is also an individual invari-
ant (see ERTEL [1]).

The initial position coordinates
◦

x1 = a1 = Θ1,
◦

x2 = a2 = Θ2,
◦

x3 = a3 = Θ3 at a reference time
t = 0 are material invariants:

dΘ1

dt
=
da1

dt
= 0,

dΘ2

dt
=
da2

dt
= 0,

dΘ3

dt
=
da3

dt
= 0.



























(11.21)

Using (11.21), equation (11.14) becomes

d

dt

{

σ
∂(a1, a2, a3)

∂(x1, x2, x3)

}

= 0, (11.22)

which is a well-known equality known as Lagrange’s
continuity equation.

Finally, replacing the three functions Θk (k =
1, 2, 3) with a function Φ, which has the property that
Φk = Φ,k (k = 1, 2, 3), turns the Jacobian (11.6) into
the Hessian

H(Φ) = |Φ,kj | = |Φ,jk|. (11.23)

If we designate
∗

Φkj as the cofactor (minor with sign)
of Φ,kj in H(Φ), we have

Φ,ki

∗

Φkj = δijH(Φ) (11.24)

instead of (11.7). Therefore, written as

d

dt
{σH(Φ)} = σ

(

∗

Φkj
dΦ,k

dt

)

,j

(11.25)

we have a special case of equation (11.14). Using
(11.25) we can transform the material derivative of a
function ψ into a spatial divergence, when ψ is deter-
mined by a function Φ in the Hessian H(Φ) = ψ/σ;
however, in order to determine Φ we now have a nonlin-
ear partial differential equation. It is immediately seen
that (11.14), (11.14a) and (11.25) are of the form of the
continuity equation.
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12 ERTEL (1961): Isogons and isotachs in two-dimensional potential flow of an
incompressible fluid

Summary

Let θ = const and v = const be the isogons and isotachs
that correspond to two-dimensional, irrotational, and incom-
pressible flow. Without making use of functional theoretical
methods, the following theorem can be demonstrated: a rota-
tion from ∇θ to ∇v along the shortest path must always be a
counterclockwise rotation of magnitude π/2, if θ is measured
positive in the same direction.

1. Introduction

Many geophysical problems can be studied within
the framework of two-dimensional, irrotational, and in-
compressible fluid motion. This is the kind of problem
addressed here. Therefore, the description of a two-
dimensional coordinate system suffices.

The hydrodynamical equations are reduced to:

∂vx
∂t

+

(

vx
∂

∂x
+ vy

∂

∂y

)

vx = −
∂Φ

∂x
−

1

ρ

∂p

∂x
, (12.1)

∂vy
∂t

+

(

vx
∂

∂x
+ vy

∂

∂y

)

vy = −
∂Φ

∂y
−

1

ρ

∂p

∂y
, (12.2)

∂vx
∂x

+
∂vy
∂y

= 0, (12.3)

∂vy
∂x

−
∂vx
∂y

= 0, (12.4)

where x, y are rectangular cartesian coordinates, vx, vy
the components of velocity, Φ the external force poten-
tial, p the pressure, and ρ the density.

In equations (12.1) and (12.2) the convective por-
tions of the acceleration are

Bx = vx
∂vx
∂x

+ vy
∂vx
∂y

=
∂

∂x

(

v2

2

)

, (12.5)

By = vx
∂vy
∂x

+ vy
∂vy
∂y

=
∂

∂y

(

v2

2

)

, (12.6)

where v = |v| is the absolute value of the vector
v = (vx, vy).

Based on conditions (12.3) and (12.4) we will in-
vestigate the isogons and isotachs of the given hydrody-
namical field.

2. Isogons and isotachs

Let x, y be a right-handed coordinate system. Us-
ing equation (12.3) we replace ∂vx/∂x with −∂vy/∂y
in (12.5) and ∂vy/∂y with −∂vx/∂x in (12.6) and, after

some manipulation, obtain (see, for instance, [1]):

Bx = −v2 ∂θ

∂y
=

∂

∂x

(

v2

2

)

,

By = +v2 ∂θ

∂x
=

∂

∂y

(

v2

2

)

,



















(12.7)

where
vx = v cos θ, vy = v sin θ, (12.8)

implies that the angle

θ = tan−1

(

vy
vx

)

(12.9)

is measured in a counterclockwise manner. The equa-
tion θ(x, y, t) = const represents an isogon and the
equation v(x, y, t) = const represents an isotach.

We deduce from (12.7) that

∂θ

∂x

∂v

∂x
+
∂θ

∂y

∂v

∂y
= 0, (12.10)

which is an orthogonality condition that states that iso-
gons and isotachs are perpendicular at all points where
they intersect (KOZENY [2]).

From equation (12.7) we can derive the Cauchy-
Riemann conditions:

∂ ln v

∂x
= −

∂θ

∂y
,

∂ ln v

∂y
=
∂θ

∂x
; (12.11)

on the other hand
∂Bx
∂x

+
∂By
∂y

= 2v

(

∂θ

∂x

∂v

∂y
−
∂θ

∂y

∂v

∂x

)

= 2v|∇θ||∇v| sinψ,

(12.12)

where ψ is the angle formed by ∇θ and ∇v. The angle
ψ is also measured counterclockwise.

Consider now the expression for the divergence
∂Bx/∂x+ ∂By/∂y as a function of the components of
the deformation tensor. Differentiating equations (12.5)
and (12.6) and taking into account condition (12.3), we
obtain:

∂Bx
∂x

+
∂By
∂y

=

(

∂vx
∂x

)2

+ 2
∂vx
∂y

∂vy
∂x

+

(

∂vy
∂y

)2

.

(12.13)
Recalling that in our case the components of the de-

formation tensor can be reduced, using (12.4), to

Dxx =
∂vx
∂x

,

Dxy = Dyx =
∂vx
∂y

=
∂vy
∂x

,

Dyy =
∂vy
∂y

,































(12.14)
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we obtain the formula:

∂Bx
∂x

+
∂By
∂y

= D2
xx + 2D2

xy +D2
yy. (12.15)

Comparing equations (12.12) and (12.15) we obtain

2v|∇θ||∇v| sinψ = D2
xx + 2D2

xy +D2
yy. (12.16)

It is easily seen that the condition for the first mem-
ber of this equation is

sinψ > 0, (12.17)

since it is necessary to exclude the exceptional case
whenDxx, Dxy, andDyy simultaneously vanish at each
point of the field, which describes the movement of a
rigid body without rotation.

The orthogonality condition (12.10) of the vectors
∇θ and ∇v determines two possible values for ψ:

ψ = ±
π

2
, (12.18)

but the inequality in equation (12.17) can only be satis-
fied if

0 < ψ < π, (12.19)

a condition that excludes the possibility of a clockwise
rotation. We immediately obtain the single solution

ψ = +
π

2
, (12.20)

which satisfies the conditions established in (12.10) and
(12.19), that is: the smallest rotation that goes from ∇θ
to ∇v is always a π/2 angle, if θ is measured in the
same direction (see also KOZENY, loc. cit.).

Considering how we obtained conditions (12.10)
and (12.19), it is easy to see that this theorem is valid
for both stationary and non-stationary motion, because
this result is simply a consequence of the kinematic con-
ditions (12.3) and (12.4). The flow must, however, be
two-dimensional and irrotational for an incompressible
fluid.
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13 ERTEL (1963a): Analogy between the equations of motion and the vortex
equations in hydrodynamics

Summary

An analogy between Euler’s motion equations and
Helmholtz’s vortex equations can be found through two sim-
ple transformations.

I. Notation and symbols

Tensorial notation is used. All indices vary between
1 and 3; summations are made over the repeated in-
dex. εijk is the alternating tensor (see, for example, F.
MORÁN [4]). xi are the rectangular cartesian coordi-
nates, v = {vi} is the velocity vector (|v| = v), ξ =
{ξi} the vorticity vector, Φ the external force potential,
p the pressure, ρ the density, and t the time.

II. The problem

We are accustomed to writing Euler’s fundamental

equations of hydrodynamics as

∂vi
∂t

+ vj
∂vi
∂xj

= −
∂

∂xi

(

Φ +
p

ρ

)

, (13.1)

∂vj
∂xj

= 0, (13.2)

for a homogeneous and incompressible fluid. Taking the
curl of (13.1), using (13.2) and substituting the expres-
sion for vorticity which is given by

ξi = εijk
∂vk
∂xj

, (13.3)

we obtain Helmholtz’s famous vorticity equations

∂ξi
∂t

+ vj
∂ξi
∂xj

= ξj
∂vi
∂xj

, (13.4)

(see, for example, M. LUCINI [3]).
Understandably, the equations of motion (13.1) do

not coincide with the equations of vorticity (13.4). How-
ever, it is possible to show that there is an analogy be-
tween equations (13.1) and (13.4). In order to achieve
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this analogy it is necessary to transform both systems
(13.1) and (13.4). The demonstration follows.

III. Representation of the analogy

Adding the identities

vj
∂vj
∂xi

=
∂

∂xi

(

v2

2

)

(13.5)

to equations (13.1) it is possible to express the motion
equations in the following form:

∂vi
∂t

+ vj

(

∂vj
∂xi

+
∂vi
∂xj

)

=
∂L

∂xi
, (13.6)

where

L =
v2

2
−

(

Φ +
p

ρ

)

(13.7)

is Lagrange’s function. The symmetric tensor

Dij(v) =
∂vj
∂xi

+
∂vi
∂xj

(13.8)

measures the deformation of the velocity field.
Let us now consider the vorticity equations (13.4).

Using the identities (see H. ERTEL [1]):

ξj
∂vi
∂xi

= ξj
∂vj
∂xi

=
∂(ξjvj)

∂xi
− vj

∂ξj
∂xi

, (13.9)

one can immediately write the vorticity equations (13.4)
as follows:

∂ξi
∂t

+ vj

(

∂ξj
∂xi

+
∂ξi
∂xj

)

=
∂M

∂xi
, (13.10)

where M is the scalar function (see, for example, H.
ERTEL and C.-G. ROSSBY [2], K. OSWATITSCH [5])

M = ξjvj . (13.11)

The symmetric tensor

Dij(ξ) =
∂ξj
∂xi

+
∂ξi
∂xj

(13.12)

measures the deformation of the vorticity field.
The equations we just derived, namely equations

(13.6) and (13.10), express the analogy we were search-
ing for. In this analogy there is a perfect correspondence
between the partial derivatives

∂vi
∂t
,
∂vj
∂xi

,
∂vi
∂xj

,
∂L

∂xi
,

which appear in the motion equations (13.6), and

∂ξi
∂t
,
∂ξj
∂xi

,
∂ξi
∂xj

,
∂M

∂xi
,

which appear in the vorticity equations (13.10).
One can also obtain generalized equations for com-

pressible fluids, if we assume that the density ρ = ρ(p),
as a function of pressure, contains identical parameters
for all particles. In this case the analogy sought is ob-
tained by substituting p/ρ by

∫

dp/ρ, and ξi and ξj by
ξi/ρ and ξj/ρ, respectively, in the corresponding ex-
pressions.
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14 ERTEL (1963b): Relationships between differential operators from vector
calculus and Lagrange’s bracket, with hydrodynamic applications

Summary

We will demonstrate the following theorem as a hydro-
dynamical application of a more general problem: The curl
of the material derivative of the vorticity of rotating particles
in an ideal and homogeneous fluid may be represented using
Lagrange’s bracket.

For the sake of brevity we make use of tensor no-
tation. All indices go from 1 to 3 and index repetition
indicates summation. Later on, we will see that it is use-
ful to introduce the permutation tensor εijk and the Kro-
necker δij [see, for instance, LAWDEN (2), F. MORÁN

(3), TH. VOGEL (5)].
We choose a rectangular cartesian coordinate sys-

tem, with axes xj and introduce a system with six func-
tions Rm and Sm of the xj and t (=time) to form the
symbols

[i, j] =
∂Rm
∂xi

∂Sm
∂xj

−
∂Rm
∂xj

∂Sm
∂xi

= −[j, i]. (14.1)

These so-called Lagrange brackets are very important
tools in Analytical Mechanics [see, for instance, D.
MORGENSTERN and I. SZABÓ (4), E. T. WHITTAKER

(6)].
Suppose now that the system of six equations Rm

and Sm is chosen such that the additional conditions

(S1, S2, S3) = S = solenoidal vector (14.2)

and
(R1, R2, R3) = R = rotS (14.3)

are met.
In this case (14.1) becomes

[i, j] = εijk rotk{(T rot − rotT )S} (14.4)

where T is the scalar operator

T = S · ∇ = Sm
∂

∂xm
. (14.5)

The demonstration of (14.4) is easily done as fol-
lows. From the definition of operator T , applied to S,
we obtain

TS = ∇
{

1
2
(S)2

}

− S × R. (14.6)

Now, following a simple transformation from vectorial
calculus, we obtain

rot (S × R) = (R · ∇)S − TR (14.7)

as the divergence of a curl vanishes, and also, due to
condition (14.2), div S = 0, so that

(R · ∇)S = (T rot − rotT )S. (14.8)

In order to obtain Lagrange’s bracket, we take the
curl of (14.8), whose component on the xk axis is

εrsk
∂

∂xr
(R · ∇Ss)

= rotk {(T rot − rotT )S} .

(14.9)

Moreover, we obtain

R · ∇Ss = Rm
∂Ss
∂xm

(14.10)

and its equivalent

R · ∇Ss = Rm
∂Sm
∂xs

, (14.11)

since the curl of S is defined as

∂Sm
∂xs

−
∂Ss
∂xm

= εsmn rotn S = εsmnRn, (14.12)

and therefore

Rm

(

∂Sm
∂xs

−
∂Ss
∂xm

)

= εsmnRmRn ≡ 0, (14.13)

[see also: H. ERTEL (1)].
Substituting the value of R · ∇Ss, given by (14.11),

into (14.9) yields

εrsk
∂Rm
∂xr

∂Sm
∂xs

= rotk {(T rot − rotT )S}. (14.14)

Applying the permutation tensor εijk to (14.14) and
then using

εijk εrsk = δirδjs − δjrδis, (14.15)

we obtain

∂Rm
∂xi

∂Sm
∂xj

−
∂Rm
∂xj

∂Sm
∂xi

= εijk rotk {(T rot − rotT )S}

(14.16)

QED.
Let us now take a look at the rotating motion of a

homogeneous, ideal liquid as a sample application of
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(14.4). In this case there is an acceleration potential Ω;
then

dv

dt
=
∂v

∂t
+ (v · ∇)v = −∇Ω, (14.17)

where v is the velocity vector, and

d

dt
=

∂

∂t
+ v · ∇ (14.18)

is the material derivative.
Keeping in mind the quantities we have previously

mentioned, and since v is a solenoidal vector, we can
establish the following relationships:

S = v (14.19)

R = ∇× v = ξ = vorticity, (14.20)

T = v · ∇ =
d

dt
−
∂

∂t
. (14.21)

(14.22)

Moreover, in virtue of (14.17) and (14.21) we have

∇× (Tv) = −
∂ξ

∂t
(14.23)

(T rot − rotT )v =
dξ

dt
(14.24)

Substituting this expression into equation (14.4), we
have

[i, j] = εijk rotk

(

dξ

dt

)

(14.25)

or, introducing the representation in terms of the com-
ponents we have



































[2, 3] = rot1

(

dξ

dt

)

,

[3, 1] = rot2

(

dξ

dt

)

,

[1, 2] = rot3

(

dξ

dt

)

,

(14.26)

which demonstrates the theorem below.

The curl of the material derivative of the vorticity of
rotating particles in a homogeneous and ideal fluid may
be represented using Lagrange’s brackets (non conser-
vative).

This demonstration may also be done in a slightly
different manner, by taking the appropriate transforma-
tion of the curl of Helmholtz’s differential equation in
vectorial notation. This, however, again requires use of
the fundamental equalities in (14.10, 14.11).
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15 ERTEL (1964): The maximum number of independent invariants in hydro-
dynamics

Summary

A theorem from the theory of partial differential equa-
tions allows the demonstration that the maximun number of
independent invariants in hydrodynamics is equal to the num-
ber of dimensions in the reference space.

In order to study the general characteristics of the
movement in any fluid it is more convenient to use or-
thogonal coordinates x1, x2 . . . , xn in a Euclidean space

of n dimensions. If we project the successive posi-
tions of the fluid particles along their trajectories dur-
ing a period of time t onto the coordinate axes, the n-
dimensional velocity of the fluid particles will have the
following n components

(v1, v2, . . . , vn) =
d

dt
(x1, x2, . . . , xn), (15.1)
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where the operator

d

dt
=

∂

∂t
+ v1

∂

∂x1

+ v2
∂

∂x2

+ · · · + vn
∂

∂xn
(15.2)

indicates a derivative following the motion of the fluid.
Let ψ = ψ(x1, x2 · · · , xn, t) be a point function

that defines a property of the hydrodynamic field dur-
ing a period of time t. If this property is stationary on
the moving particles

dψ

dt
=
∂ψ

∂t
+v1

∂ψ

∂x1

+v2
∂ψ

∂x2

+. . .+vn
∂ψ

∂xn
= 0 (15.3)

which means that ψ remains constant if we move with
one of the particles. When (15.3) is true, the variable ψ
is called a ‘material invariant’ or ‘hydrodynamic invari-
ant’ with respect to the trajectory considered. The study
of these hydrodynamic invariants is very important in
dynamic meteorology and magnetohydrodynamics (see,
for example, [1], [2], [3], [4], [6], [8]).

The identification of a given particle in an n-
dimensional fluid along its trajectory during a period
of time t ≥ 0 requires knowledge of n independent
quantities which satisfy (15.3). As an example, we
may use Lagrange’s initial coordinates {a1, a2 . . . , an}
which form a completely independent set.

All of the initial coordinates satisfy (15.3), and
therefore the system of parametric equations for their
trajectory

x1 = x1(a1, a2 . . . , an, t),

x2 = x2(a1, a2 . . . , an, t),

...

xn = xn(a1, a2 . . . , an, t),























(15.4)

contains the n hydrodynamic invariants a1, a2, . . . , an
as solutions of Lagrange’s fundamental hydrodynamic
equations.

By virtue of the continuity equation, we know that
the determinant of the transformation cannot vanish:

∂(x1, x2, . . . , xn)

∂(a1, a2, . . . , an)
6= 0. (15.5)

Therefore, solving (15.4) for a1, a2, . . . , an, one obtains

a1 = a1(x1, x2, . . . , xn, t),

a2 = a2(x1, x2, . . . , xn, t),

...

an = an(x1, x2, . . . , xn, t).























(15.6)

Other hydrodynamic invariants can be added which
correspond to certain thermodynamic conditions. An

example of that is the entropy in adiabatic non-
dissipative flows (see, for example, [9]).

One should, however, conjecture that more than
n hydrodynamic invariants will be functionally depen-
dent. The demonstration of this hypothesis is very sim-
ple: Given n invariants a1, a2, . . . , an and an additional
different invariant J , the system of n conditions

(

∂

∂t
+ v1

∂

∂x1

+ v2
∂

∂x2

+ · · · + vn
∂

∂xn

)

a1 = 0,

(

∂

∂t
+ v1

∂

∂x1

+ v2
∂

∂x2

+ · · · + vn
∂

∂xn

)

a2 = 0,

...
(

∂

∂t
+ v1

∂

∂x1

+ v2
∂

∂x2

+ · · · + vn
∂

∂xn

)

an = 0,















































(15.7)
along with the additional condition

(

∂

∂t
+ v1

∂

∂x1

+ v2
∂

∂x2

+ · · · + vn
∂

∂xn

)

J = 0

(15.8)
constitutes a heterogeneous linear system of n +
1 equations with n unknowns v1, v2, . . . , vn (where
J, a1, a2, . . . , an and all of their first order partial
derivatives are continuous functions). From algebraic
analysis we know that a heterogeneous linear system of
n + 1 equations and n unknowns will only admit non
trivial solutions when the determinant formed by the co-
efficients and the independent terms vanishes (see, for
example [7]).

The condition of compatibility of the system of
equations comprised by (15.7) and (15.8) is

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂J
∂t

∂J
∂x1

∂J
∂x2

· · · ∂J
∂xn

∂a1

∂t
∂a1

∂x1

∂a1

∂x2
· · · ∂a1

∂xn

...
...

... · · ·
...

∂an

∂t
∂an

∂x1

∂an

∂x2
. . . ∂an

∂xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∂(J, a1, a2, . . . , an)

∂(t, x1, x2, . . . , xn)

= 0.

(15.9)

This condition implies functional dependence be-
tween the functions J, a1, a2, . . . , an of the variables
x1, x2, . . . , xn:

J = J(a1, a2, . . . , an) (15.10)

(see, for example, [5]). It follows that the maxi-
mum number of independent hydrodynamic invariants
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is equal to the number of dimensions of the reference
space, as we wanted to prove.

This result may be enunciated as the application of a
theorem from the theory of partial differential equations,
namely: Any function J which obeys (15.8) should ver-
ify (15.9) (eliminating v1, v2, . . . , vn, combined with
(15.7)), which proves that there is a functional de-
pendence between J, a1, a2, . . . , an (see, for example,
[10]).
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[1] ERTEL, H., Über Hydrodynamische Wirbelätze.
Physikal. Z. 43 (1942), 526–520.

[2] ERTEL, H., Teorema sobre invariantes sustanciales de
la Hidrodinámica. Gerl. Beitr. Geophys. 69 (1960),
290–293.

[3] ERTEL, H., and C.-G. ROSSBY, A new
Conservation-theorem of Hydrodynamics. Geofis.
pura y appl. XIV (1949), 189–193.

[4] FORTAK, H., Zur Frage allgemeiner
hydrodynamischer Erhaltungssätze. Gerl. Beitr.
Geophys. 65 (1956), 283–294.

[5] GILLESPIE, R.P., Partial Differentiation,
Edinburgh/London 1951, 43–46.

[6] HOLLMANN, G., Ein vollständiges System
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16 ERTEL (1965a): Hydrodynamic commutation formulas

Summary

From the Lagrangian form of the hydrodynamic equa-
tions for perfect fluids a commutation relation is derived. The
continuity equation is not necessary for this derivation. This
commutation relation, expressed in Lagrangian arguments,
can be transformed by additional consideration of the con-
tinuity equation into a commutation relation expressed in Eu-
lerian arguments.

1. Symbols and fundamental equations

In the following we will use the symbols of tensor
analysis in three-dimensional Euclidean space. All in-
dices range over the values 1,2,3. In a term with re-
peated indices we use the summation convention, with
the sum taken from 1 to 3.

Define

δij =

{

+1 if i = j,

0 if i 6= j,

as the substitution tensor and

εijk =











+1, if i, j, k form a cyclic sequence,

−1, if i, j, k form a noncyclic sequence,

0, if any two indices agree,

as the permutation symbol.

The hydrodynamic equations for a perfect gas can
be written in the Lagrangian form

∂2xm
∂t2

∂xm
∂aj

= −
∂Φ

∂aj
− σ

∂p

∂aj
(16.1)

(momentum equation)

σ0 = σD−1 (16.2)

(continuity equation)

or in the Eulerian form

dvj
dt

=

(

∂

∂t
+ vk

∂

∂xk

)

vj = −
∂Φ

∂xj
− σ

∂p

∂xj
(16.3)

(momentum equation)

dσ

dt
= σ

∂vk
∂xk

(16.4)

(continuity equation)

where we have defined the scalars Φ = potential for ex-
ternal forces, p = pressure, σ = specific volume (recip-
rocal of the density), t = time, and in (16.2) the func-
tional determinant

D =
∂(x1, x2, x3)

∂(a1, a2, a3)
(16.5)
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of the position coordinates xj = xj(a1, a2, a3) of a fluid
particle for t ≥ 0 with respect to the labeling coordi-
nates aj , and the specific volume σ0 = σ0(a1, a2, a3) at
t = 0.

In the Lagrangian framework (16.1) and (16.2) the
independent variables are the labeling coordinates aj
and the time t, while in the Eulerian framework (16.3)
and (16.4) the independent variables are the orthogonal
cartesian coordinates xj and the time t. The material
derivative in the Lagrangian framework is denoted by
the operator ∂/∂t, while in the Eulerian framework by
the operator d/dt = ∂/∂t+ vk(∂/∂xk), so that, for ex-
ample, the wind components in the Lagrangian frame-
work are given by

∂

∂t
xj(a1, a2, a3, t) =

∂xj
∂t

= vj (16.6)

and in the Eulerian framework by

dxj
dt

=

(

∂

∂t
+ vk

∂

∂xk

)

xj = vk
∂xj
∂xk

= vkδjk = vj .

(16.7)

The scalar fields p, σ,Φ in the Lagrangian framework
are functions of the independent variables aj , t and in
the Eulerian framework are functions of the independent
variables xj , t.

2. Derivation of a commutation relation from the La-
grangian form of the hydrodynamical equations

We proceed from the Lagrangian momentum equa-
tions (16.1), which, in consideration of (16.6), can be
written as

∂vm
∂t

∂xm
∂aj

= −
∂Φ

∂aj
− σ

∂p

∂aj
. (16.8)

We then apply to (16.8) the differential operator
εijk

∂ψ
∂ak

∂
∂ai

, containing the differentiable function ψ.
Considering the antisymmetry of εijk, we have:

εijk
∂ψ

∂ak

∂2vm
∂t ∂ai

∂xm
∂aj

= −εijk
∂σ

∂ai

∂p

∂aj

∂ψ

∂ak

= +εijk
∂p

∂ai

∂σ

∂aj

∂ψ

∂ak

(16.9)

or, again considering (16.6) and εijk
∂vm

∂ai

∂vm

∂aj
= 0:

∂

∂t

(

εijk
∂vm
∂ai

∂xm
∂aj

∂ψ

∂ak

)

−

(

εijk
∂vm
∂ai

∂xm
∂aj

∂

∂ak

)

∂ψ

∂t

= εijk
∂p

∂ai

∂σ

∂aj

∂ψ

∂ak
. (16.10)

The right hand side of (16.10) is the functional de-
terminant of the functions p, σ, ψ with respect to the co-
ordinates a1, a2, a3, i.e.,

εijk
∂p

∂ai

∂σ

∂aj

∂ψ

∂ak
=

∂(p, σ, ψ)

∂(a1, a2, a3)
. (16.11)

The two terms of the left side of (16.10) contain the
Lagrangian bracket symbols from analytical mechan-
ics (see, for example, E. T. WHITTAKER [16]), here in
(16.10) for the quantities vm and xm (m = 1, 2, 3):

εijk
∂vm
∂ai

∂xm
∂aj

= {v, x}k (16.12)

where

v ≡ vm(a1, a2, a3, t)

and

x ≡ xm(a1, a2, a3, t)











(16.13)

are used as abbreviations for the wind components and
the position coordinates.

The substitution of (16.12) into (16.10) results in the
sought-after commutation relation in the form:

(

∂

∂t

) (

{v, x}k
∂

∂ak

)

ψ −

(

{v, x}k
∂

∂ak

) (

∂

∂t

)

ψ

= εijk
∂p

∂ai

∂σ

∂aj

∂ψ

∂ak
(16.14)

or, written in operator form:

(

∂

∂t

) (

{v, x}k
∂

∂ak

)

−

(

{v, x}k
∂

∂ak

) (

∂

∂t

)

= εijk
∂p

∂ai

∂σ

∂aj

∂

∂ak
(16.15)

These commutation relations, (16.14) and (16.15),
state that the operators

∂

∂t
and {v, x}k

∂

∂ak
(16.16)

commute when applied to any (twice differentiable)
function ψ if there exists for all fluid particles the same
piezotropic relation

σ = σ(p). (16.17)

If the relationship (16.17) does not exist, the opera-
tors (16.16), when applied to a function of the special
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form ψ = ψ(p, σ), also commute, since in this case the
functional determinant (16.11) likewise disappears. It is
natural that the commutation property of the operators
(16.16) always applies for homogeneous (σ = const)
perfect fluids, since constant σ makes the right sides of
(16.14) and (16.15) vanish.

The commutation relations (16.14) and (16.15)
make possible the derivation of conservation laws. Con-
sider a fluid for which there exists one piezotropic rela-
tion of the form (16.17). We can select for ψ, for exam-
ple, each labeling coordinate aj . Since

∂aj
∂t

= 0 (16.18)

always holds, (16.14) reduces to
(

∂

∂t

) (

{v, x}k
∂aj
∂ak

)

=

(

∂

∂t

)

({v, x}kδjk)

=

(

∂

∂t

)

({v, x}j) = 0,

(16.19)

which says: The Lagrangian bracket symbols are in this
case constant along the trajectory of each individual par-
ticle, a result that finds multiple applications in classical
hydrodynamics (see, for example, H. LAMB [10]).

3. Derivation of a commutation relation from the Eu-
lerian form of the hydrodynamical equations

Starting from the Eulerian form of the momentum
equations for perfect fluids (16.3) and the continuity
equation (16.4), the following commutation relation can
be derived (H. ERTEL [1,2]; D. MORGENSTERN and I.
SZABÓ [13], K. OSWATITSCH [14]):

(

d

dt

) (

σξk
∂

∂xk

)

ψ −

(

σξk
∂

∂xk

) (

d

dt

)

ψ

= σεijk
∂p

∂xi

∂σ

∂xj

∂ψ

∂xk
(16.20)

where

ξk = εijk
∂vj
∂xi

(16.21)

are the components of the vorticity vector (curl of the
velocity vector). This commutation relation (16.20), ex-
pressed in the Eulerian framework, has already been
repeatedly used in special and generalized applications
(H. ERTEL [3,4], H. FORTAK [6], G. HOLLMANN [7],
P. MAUERSBERGER [12]).

4. The relation between the two commutation for-
mulas

Since the derivation of (16.20) requires considera-
tion of the continuity equation, an equation that was
not necessary for the derivation of the commutation re-
lation (16.14), the transformation of (16.14) to (16.20)
and vice versa is of interest for discovering the connec-
tion between the two commutation relations (16.14) and
(16.20).

In order to transform for example (16.14) into
(16.20), one takes the product of (16.14) and (16.2), an
operation which is equivalent to the introduction of the
continuity equation (16.2) into (16.14). With considera-
tion of the time-independence of σ0, we obtain:

(

∂

∂t

) (

σ0{v, x}k
∂

∂ak

)

ψ

−

(

σ0{v, x}k
∂

∂ak

) (

∂

∂t

)

ψ

= σD−1εijk
∂p

∂ai

∂σ

∂aj

∂ψ

∂ak
, (16.22)

the right side of which can be written, using (16.5) and
(16.11), as

σD−1εijk
∂p

∂ai

∂σ

∂aj

∂ψ

∂ak

= σ
∂(p, σ, ψ)

∂(a1, a2, a3)

(

∂(x1, x2, x3)

∂(a1, a2, a3)

)

−1

(16.23)

which in turn, with the use of the well-known functional
determinant product rule, becomes

σD−1εijk
∂p

∂ai

∂σ

∂aj

∂ψ

∂ak
= σ

∂(p, σ, ψ)

∂(x1, x2, x3)

= σεijk
∂p

∂xi

∂σ

∂xj

∂ψ

∂xk
(16.24)

which is in agreement with the right side of (16.20).
On the left side of (16.20) the following rearrange-

ment is possible:

{v, x}k
∂

∂ak
= εijk

∂vm
∂ai

∂xm
∂aj

∂

∂ak

= εijk
∂xq
∂ai

∂vm
∂xq

·
∂xr
∂aj

∂xm
∂xr

·
∂xs
∂ak

∂

∂xs

= εijk
∂xq
∂ai

∂xr
∂aj

∂xs
∂ak

·
∂vm
∂xq

∂xm
∂xr

∂

∂xs
. (16.25)

Using the general formula of the determinant sym-
bolism (see, for example, H. JEFFREYS [8], H. JEF-
FREYS and B. SWIRLES [9], A. J. MCCONNELL [11],
G. TEMPLE [15])

εijk
∂xq
∂ai

∂xr
∂aj

∂xs
∂ak

= εqrsD, (16.26)
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and the substitution tensor

∂xm
∂xr

= δmr (16.27)

in (16.25), we obtain, with consideration of (16.26),
(16.21) and (16.2), the operator equation:

σ0{v, x}k
∂

∂ak
= σ0Dεqrs

∂vr
∂xq

∂

∂xs

= σξs
∂

∂xs
= σξk

∂

∂xk
.

(16.28)

The substitution of (16.24) and (16.28) in (16.22)
and the change from the Lagrangian to the Eulerian
form of the material derivative ∂/∂t → d/dt yields the
commutation relation (16.20), q.e.d.

The inverse transformation, that is the elimination
of the continuity equation from (16.20) to recover the
commutation relation (16.14), has already discussed in
another paper (H. Ertel [5]). Thus, using the continuity
equation (16.2) with the functional determinant (16.5),
a reversible connection between the two commutation
relations (16.14) and (16.20) has been established. The
transformation of the commutation relations (16.14) and
(16.20) into one another is always executable, since the
continuity equation, as an expression of the law of the
conservation of fluid matter, provides a guarantee for it
in that the functional determinant (16.5) is always dif-
ferent from zero.
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17 ERTEL (1965b): Commutative operators for unsteady flow of a perfect,
piezotropic fluid

The flow of a perfect, piezotropic fluid (in the nota-
tion of, for example, J. SERRIN [7]) is governed by the
momentum equation

dvi
dt

= −
∂

∂xi

(

Φ +

∫

σ dp

)

, (17.1)

or equivalently,

∂vi
∂t

= εijkvjξk −
∂H

∂xi
, (17.2)

by the continuity equation

dσ

dt
= σ

∂vj
∂xj

, (17.3)

and by the piezotropic relation

σ = σ(p), (17.4)

where xi (i = 1, 2, 3) = orthogonal cartesian coordi-
nates (right-handed system), vi (i = 1, 2, 3) = compo-
nents of the velocity vector v, εijk (i, j, k = 1, 2, 3)
= permutation symbol (antisymmetric in all indices),
and ξk = εijk

∂vj

∂xi
= components of the vorticity vector

ξ = ∇× v. The scalars Φ, σ, p,H = 1
2
v2 + Φ +

∫

σ dp
(with v2 = vjvj) and t respectively denote the poten-
tial for external forces, the specific volume (reciprocal
of density), the pressure, the energy, and the time; in
addition

d

dt
=

∂

∂t
+ vj

∂

∂xj
(17.5)

is the material differential operator of hydrodynamics.
In the previous equations we consistly use the usual for-
mulation of vector analysis (see, for example, G. H. A.
COLE [1], J. O. HINZE [5]) with the Einstein summa-
tion convention. From equations (17.1), or equivalently
(17.2), and (17.3), we deduce that the operators

d

dt
and σξi

∂

∂xi
(= σξ · ∇)

applied to the twice differentiable function ψ =
ψ(x1, x2, x3, t) are commutative (H. ERTEL [2], [3];
see, for example, D. MORGENSTERN and I. SZABÓ

[6]), so that
(

d

dt

) (

σξi
∂

∂xi

)

ψ −

(

σξi
∂

∂xi

) (

d

dt

)

ψ = 0.

(17.6)

We wish to utilize the commutation relation (17.6)
to prove that the operators

d

dt
and σξi

∂

∂t

(

= σξ
∂

∂t

)

are commutative when applied to the components of the
flow velocity vector

v = {vi} (i = 1, 2, 3)

for the flow field of a perfect, piezotropic fluid:

(

d

dt

) (

σξi
∂

∂t

)

vi −

(

σξi
∂

∂t

) (

d

dt

)

vi = 0,

(17.7)
or in the coordinate-independent formulation of vector
analysis:

(

d

dt

) (

σξ
∂

∂t

)

v −

(

σξ
∂

∂t

) (

d

dt

)

v = 0.

(17.8)
To prove (17.7), or equivalently (17.8), we set ψ = H
in (17.6), which results in

(

d

dt

) (

σξi
∂

∂xi

)

H −

(

σξi
∂

∂xi

) (

d

dt

)

H = 0.

(17.9)
From the momentum equation in the form (17.2) it fol-
lows that

(

σξi
∂

∂xi

)

H = −

(

σξi
∂

∂t

)

vi, (17.10)

whereas from the momentum equation in the form
(17.1) it follows that

d

dt

(

v2

2

)

= −

(

vi
∂

∂xi

) (

Φ +

∫

σ dp

)

(17.11)

and, with consideration of (17.5) and the definition of
the total energy H , that:

dH

dt
=

∂

∂t

(

Φ +

∫

σ dp

)

. (17.12)

From this it immediately follows that

(

σξi
∂

∂xi

) (

d

dt

)

H

=

(

σξi
∂

∂t

)

∂

∂xi

(

Φ +

∫

σ dp

)

, (17.13)
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or with the use of (17.1):
(

σξi
∂

∂xi

) (

d

dt

)

H = −

(

σξi
∂

∂t

) (

d

dt

)

vi.

(17.14)
Substitution of (17.10) and (17.14) into (17.9) yields the
desired equation (17.7), thereby completing our argu-
ment and demonstrating the coordinate-free notation of
equation (17.8). It is possible to obtain equations (17.7)
and (17.8) by another method, based on the hydrody-
namical vorticity equation, in which yet another opera-
tion can be given, with the application to the flow field
of a perfect, piezotropic fluid yielding the commutation
relation if the field is stationary (H. ERTEL [4]).
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18 ERTEL (1965c): Theorem on unimodular transformations of the hydrody-
namical labeling coordinates

Summary

From the equations which express the dependence of the
initial coordinates upon the coordinates of the space-time
continuum we can form an invariant with respect to unimod-
ular transformations from one system of initial coordinates to
another.

1. Introduction

Assume that a fluid flows through an n-dimensional
space. A particular point in space is given by the coordi-
nates {x1, x2, . . . , xn}, measured with respect to a fixed
frame of reference, and a particular particle is identi-
fied by the parameters {a1, a2, . . . , an} (“labeling co-
ordinates,” see, for example, V. BJERKNES, J. BJERK-
NES, H. SOLBERG, T. BERGERON [1], H. L. DRYDEN,
F. D. MURNAGHAN, H. BATEMAN [2]). An exam-
ple of labeling coordinates are the particle positions at
t = 0 (“Anfangs-coordinates”). Special presuppositions
on the nature of the fluid (whether ideal or viscous, in-
compressible or compressible) are not necessary for our
purposes.

For brevity the notation of tensor analysis is
adopted. All indices range from 1 to n; a term with
repeated indices is to be summed from 1 to n. Other
symbols are defined in the text.

2. Statement of the theorem

The solutions of the hydrodynamical equations, in-
cluding the required physical connections, are embodied
in the system of implicit functions (j = 1, 2, . . . , n):

Rj(x1, x2, . . . , xn, a1, a2, . . . , an, t) = 0. (18.1)

Solving for xj gives the parameter description of
particle trajectories:

xj = xj(a1, a2, . . . , an, t), (18.2)

whereas solution for aj results in:

aj = aj(x1, x2, . . . , xn, t), (18.3)

from which, for example for the purposes of meteo-
rology, one can answer the question of which particle
(air mass) passes through the fixed spatial coordinates
{x1, x2, . . . , xn} at time t.

In that the functions (18.2) are to be regarded as
continuous and differentiable, and furthermore that the
continuity equation in Lagrangian form requires that the
functional determinant of x1, x2, . . . , xn, t with respect
to a1, a2, . . . , an, t, or its inverse, is always different
than zero, the system (18.2) is the inverse transforma-
tion of (18.2) (and vice versa).
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A system of infinitesimal variations δx1, δx2, . . . ,
δxn, δt of the coordinates of space-time x1, x2, . . . ,
xn, t is related to the variations of the labeling coordi-
nates by

δaj =
∂aj
∂xk

δxk +
∂aj
∂t

δt (j, k = 1, 2, . . . , n).

(18.4)
Here the δxk (k = 1, 2, . . . , n) and δt are indepen-

dently and freely selectable. The operator ∂/∂t denotes
the local time derivative in the Eulerian sense, i.e.,

∂

∂t
=

(

∂

∂t

)

x1,x2,...,xn

(18.5)

not the operator for individual or material differentiation
with respect to time:

d

dt
=

(

∂

∂t

)

a1,a2,...,an

(18.6)

which makes possible simple expressions for preserva-
tion of the particle-bound properties (H. ERTEL [3], G.
HOLLMANN [4]). For example, the individual preser-
vation of the labeling coordinates is expressed by the
system

daj
dt

= 0 (j = 1, 2, . . . , n) (18.7)

while ∂aj/∂t for a moving fluid can never disappear be-
cause of the local particle change at fixed spatial points.

According to (18.3), the partial derivatives ∂aj/∂xk
and ∂aj/∂t in (18.4) are functions of x1, x2, . . . , xn and
t. However, by means of (18.2), they can also be repre-
sented as functions of a1, a2, . . . , an and t. This latter
representation is assumed for the purpose of the follow-
ing calculations.

In place of the system aj (j = 1, 2, . . . , n) we now
transform to another system bj (j = 1, 2, . . . , n) of la-
beling coordinates through the transformation

bj = bj(a1, a2, . . . , an) (j = 1, 2, . . . , n) (18.8)

with the transformation determinant

∂(b1, b2, . . . , bn)

∂(a1, a2, . . . , an)
= 1 (18.9)

(unimodular transformation; see, for example, B. J.
NAAS and H. L. SCHMID [6], H. REICHARDT [7],
P. A. SCHIROKOW and A. P. SCHIROKOW [8], K.
STRUBECKER [9], E. VIDAL ABASCAL [10]). Then
from (18.3) and (18.4), with the aid of (18.8) and (18.9),
we deduce the following theorem:

The form

F =
∂ δaj
∂aj

(18.10)

is an invariant with respect to a unimodular transforma-
tion from one system of labeling coordinates to another.

3. Proof of the theorem

The variations (18.4) are related through (18.8) to
the variations

δbj = bj,k δak (18.11)

of the new labeling coordinates, where ∂bj/∂ak = bj,k.
Identifying bjm (without the comma between the in-

dices) as the subdeterminant corresponding to the el-
ement bj,m of the determinant (18.9), the determinant
adopts the form:

bjmbk,m = bmjbm,k =

{

+1, if j = k,

0, if j 6= k.
(18.12)

Then it can be shown that the solutions of the system
(18.11) for δaj can be written as

δaj = bkj δbk, (18.13)

from which the expression in the above theorem can be
written as

∂ δaj
∂aj

= bkj,j δbk + bkj
∂ δbk
∂aj

. (18.14)

Through alteration of the summation indices on the right
hand side, we obtain

∂ δaj
∂aj

= bjk,k δbj + bjm
∂ δbj
∂am

. (18.15)

In (18.15) we have

bjk,k =
∂bjk
∂ak

=
∂bjk
∂brs

br,sk = 0, (18.16)

because br,sk = ∂2br/∂ak∂as = ∂2br/∂as∂ak is sym-
metric in the indices s and k, and the (n− 2)-order sub-
determinant of the determinant (18.9)

∂bjk
∂br,s

= −
∂bjs
∂br,k

(18.17)

is antisymmetric in these indices (see, for example, B.
E. MADELUNG [5]). Thus, (18.15) reduces to

∂ δaj
∂aj

= bjm
∂ δbj
∂am

. (18.18)
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Analogous to equations (18.3) and (18.4) for the la-
beling coordinates aj and their variations δaj with re-
spect to the coordinates (x1, x2, . . . , xn, t) of the space-
time continuum, for the label coordinates bj and their
variations δbj we have

bj = bj(x1, x2, . . . , xn, t), (18.19)

δbj =
∂bj
∂xk

δxk +
∂bj
∂t
δt. (18.20)

By elimination of the spatial coordinates x1, x2, . . . , xn
the coefficients ∂bj/∂xk and ∂bj/∂t can be expressed
as functions of b1, b2, . . . , bn and t. Then, the right hand
side of (18.18) can be transformed into

bjm
∂ δbj
∂am

= bjmbk,m
∂ δbj
∂bk

(18.21)

so that from (18.18), with consideration of (18.12), we
obtain

∂ δaj
∂aj

=
∂ δbj
∂bj

(18.22)

which proves the invariance of the form (18.10) with re-
spect to the unimodular transformation (18.8) and (18.9)
of the labeling coordinates.

4. Corollary

From (18.22) there follows the invariance relations

∂

∂aj

(

∂aj
∂xi

)

=
∂

∂bj

(

∂bj
∂xi

)

(i = 1, 2, . . . , n)

(18.23)
and

∂

∂aj

(

∂aj
∂t

)

=
∂

∂bj

(

∂bj
∂t

)

(18.24)

with respect to unimodular transformation of
the labeling coordinates, because the variations
δx1, δx2, . . . , δxn, δt are arbitrary and independent.

5. Hydrodynamical interpretation

The derived relations (18.10), or equivalently
(18.22), (18.23) and (18.24) (especially, equation
(18.24)) require additional explanation.

In (18.24) ∂aj/∂t is the local time derivative
of the labeling coordinate aj at the fixed point
{x1, x2, . . . , xn} of reference space, which arises due
to the passage of labeled particles. If these changes are
assigned to the particle labels that occur at the same time
t at neighboring spatial points, and if with these particle

labels the expression on the left side of (18.24) is cal-
culated, then the same result is invariably obtained in
another system of labeling coordinates bj that is related
to the system aj by a unimodular tranformation.

The interpretation of the formula (18.23) is similar
to the interpretation of (18.10) and (18.22). The creation
of these invariant forms is based on the hydrodynam-
ical fact that all systems of labeling coordinates must
contain the necessary number of eliminable coordinates
(here x1, x2, . . . , xn).

The invariant form F in equation (18.10) is in gen-
eral a function of the coordinates of the space-time con-
tinuum, which depends on the physical behaviour of the
fluid. If the labeling coordinates a j are selected to be
the particle positions at time t = 0, and the fluid is in-
compressible, then F = 0, as can be seen from the con-
tinuity equation in Lagrangian form. Then, in equations
(18.22), (18.23) and (18.24) the sums on either side van-
ish.

In the case of a compressible fluid, we obtain

F =
∂ δaj
∂aj

= δ

{

ln

(

ρ

ρ0

)}

(18.25)

(ρ =density, ρ0 =initial density). This can be proved
through logarithmic variation of the continuity equation

∂(a1, a2, · · · , an)

∂(x1, x2, · · · , xn)
=

ρ

ρ0

(18.26)

under the condition that the operators δ and
∂/∂x1, ∂/∂x2, . . . , ∂/∂xn are commutable.
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hydrodynamischer Erhaltungssätze. Arch. Meteorol.
Geophys. Bioklim. A 14 (1964), 1–13.

[5] MADELUNG, E., Eie mathematischen Hilfsmittel des
Physikers, 7. Aufl. Berlin/Göttingen/Heidelberg 1964,
145.

[6] NAAS, J., u. H. L. SCHMID, Mathematisches
Wörterbuch, Bd. II, Berlin/Leipzig 1961, 787.

48



[7] REICHARDT, H., Vorlesungen über Vektor- und
Tensorrechnung, Berlin 1957, 29.

[8] SCHIROKOW, P. A., u. A. P. SCHIROKOW, Affine
Differentialgeometrie, Leipzig 1962, 142.

[9] STRUBECKER, K., Differentialgeometrie II, Berlin
1958, 117–118.

[10] VIDAL ABASCAL, E., Introducción a la Geometrı́a
Diferencial, Madrid 1956, 277.

19 ERTEL (1970a): A relationship between kinematical parameters of horizontal
flow fields in the atmosphere

Summary

The quasilinear inertia terms in two different forms are
compatible only if the determinant of the coefficients of the
velocity components is equal to zero. This condition of com-
patibility gives a relationship between the parameters which
characterize the kinematics of two-dimensional air move-
ments. The simple example of the gradient wind discloses
the meaning of this relationship.

“Observations show that every large-scale current in
the atmosphere is nearly horizontal” (J. Holmboe, G.
E. Forsythe, W. Gustin [5]). The research methods of
the kinematics of horizontal flow must develop integrat-
ing components of dynamic and synoptic meteorology
(V. Bjerknes, Th. Hesselberg, O. Devik [1]; V. Bjerknes,
J. Bjerknes, H. Solberg, T. Bergeron [2]; J. M. Jansa
Guardiola [6]). That part of a horizontal flow field that
is in the immediate vicinity of any moving air (mass)
parcel can be regarded with sufficient approximation as
evenly varying. For such regions, a relation between
various parameters of the fields of flow will be derived
here. For kinematic parameters this relation contains,
on the one hand, the three components of the symmetri-
cal deformation tensor and the spin of the air mass ele-
ments, and on the other hand, the streamline-tangential
derivatives of the isotachs and isogons.

Let x and y be arbitrarily oriented orthogonal carte-
sian coordinates in the horizontal plane, which, together
with an upward vertical z–coordinate, form a right-
handed system. Based on this system, vx and vy are
the horizontal components of the flow velocity. We de-
fine dvx/dt and dvy/dt as the material derivatives, with
∂vx/∂t and ∂vy/∂t the local derivatives of the flow
components with respect to time, t, such that

dvx
dt

−
∂vx
∂t

=
∂vx
∂x

vx +
∂vx
∂y

vy (19.1)

and

dvy
dt

−
∂vy
∂t

=
∂vy
∂x

vx +
∂vy
∂y

vy (19.2)

are the nonlinear terms, those which generally contain
the nonsymmetric gradient tensor (D. Morgenstern and
I. Szabó [8])

V =









∂vx
∂x

∂vx
∂y

∂vy
∂x

∂vy
∂y









. (19.3)

In addition, we use polar coordinates to represent
the flow field, with positive definite v = (v 2

x + v2
y)

1/2

representing the flow speed and α being the positive az-
imuthal angle, so that

vx = v cosα, vy = v sinα. (19.4)

The lines v = const and α = const are the iso-
tachs and isogons, respectively, of the flow field and
∂/∂s = cosα (∂/∂x) + sinα (∂/∂y) is the streamline-
tangential derivative, which with (19.1) and (19.2) im-
plies

dvx
dt

−
∂vx
∂t

= v
∂vx
∂s

,
dvy
dt

−
∂vy
∂t

= v
∂vy
∂s

. (19.5)

Because, in consideration of (19.4),

∂vx
∂s

=
∂v

∂s
cosα− v

∂α

∂s
sinα, (19.6)

and

∂vy
∂s

=
∂v

∂s
sinα+ v

∂α

∂s
cosα, (19.7)

we can write expressions for the convection of vx and
vy:

v
∂vx
∂s

=
∂v

∂s
vx − v

∂α

∂s
vy, (19.8)

v
∂vy
∂s

= v
∂α

∂s
vx +

∂v

∂s
vy, (19.9)
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which with (19.5) results in

dvx
dt

−
∂vx
∂t

=
∂v

∂s
vx − v

∂α

∂s
vy, (19.10)

dvy
dt

−
∂vy
∂t

= v
∂α

∂s
vx +

∂v

∂s
vy. (19.11)

Subtraction of equation (19.10) from (19.1) and of
equation (19.11) from (19.2) yields the homogeneous
system, expressed in terms of both the flow components
(vx,vy):

(

∂vx
∂x

−
∂v

∂s

)

vx +

(

∂vx
∂y

+ v
∂α

∂s

)

vy = 0, (19.12)

(

∂vy
∂x

− v
∂α

∂s

)

vx +

(

∂vy
∂y

−
∂v

∂s

)

vy = 0, (19.13)

which, as evident from its derivation, must apply for
nonstationary as well as stationary flow fields.

We now go from the nonsymmetric gradient tensor
to the symmetric deformation tensor (tensor of the de-
formation of the flow)

D =

(

Dxx Dxy

Dyx Dyy

)

(19.14)

by defining the following components:

Dxx =
∂vx
∂x

,

Dyy =
∂vy
∂y

,

Dxy = Dyx =
1

2

(

∂vx
∂y

+
∂vy
∂x

)

,

(19.15)

and using the identities:

∂vx
∂y

= Dxy −
1

2

(

∂vy
∂x

−
∂vx
∂y

)

= Dxy − S, (19.16)

∂vy
∂x

= Dxy +
1

2

(

∂vy
∂x

−
∂vx
∂y

)

= Dxy + S, (19.17)

where the spin (A. S. Ramsey [9]; O. G. Sutton [11])

S =
1

2

(

∂vy
∂x

−
∂vx
∂y

)

(19.18)

denotes the turning of an air (mass) parcel around the
vertical z-axis.

The components Dxx and Dyy of the deformation
tensor (19.14) describe the stretching and compression
rates of the fluid parcels, while the component D xy ex-
presses a shearing rate (O. Tietjens [12]). A necessary
and sufficient condition for motion without deforma-
tion, analogous to a rigid body, is that all terms in the
deformation tensor vanish (J. Serrin [10]).

The spin defined in (19.18) is the turning rate of air
parcels relative to the (x, y)-system. Relative to the con-
vection of the direction of flow α the spin of a fluid par-
ticle is given by

R = S − v
∂α

∂s
. (19.19)

Now, through elimination of the components of the
gradient tensor of the flow in equations (19.12) and
(19.13), and by means of (19.15), (19.16), and (19.17)
the following system results:

(

Dxx −
∂v

∂s

)

vx +

(

Dxy − S + v
∂α

∂s

)

vy = 0,

(19.20)
(

Dxy + S − v
∂α

∂s

)

vx +

(

Dyy −
∂v

∂s

)

vy = 0,

(19.21)
or, considering (19.19), in a somewhat more abbreviated
form:

(

Dxx −
∂v

∂s

)

vx + (Dxy −R) vy = 0, (19.22)

(Dxy +R) vx +

(

Dyy −
∂v

∂s

)

vy = 0. (19.23)

The necessary and sufficient condition (M. Bocher
[3]) for the compatability of equations (19.22) and
(19.23) appears in determinant form as:

∣

∣

∣

∣

∣

∣

∣

∣

Dxx −
∂v

∂s
Dxy −R

Dxy +R Dyy −
∂v

∂s

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (19.24)

that is, the equation

(

∂v

∂s

)2

−
∂v

∂s
(Dxx +Dyy)

+

∣

∣

∣

∣

Dxx Dxy

Dyx Dyy

∣

∣

∣

∣

+R2 = 0

(19.25)

must be satisfied.
Equation (19.25) represents the sought-after relation

between the kinematic parameters—their invariance in
relation to rotations of the orthogonal (x, y) coordinate
system about the vertical z−axis is thereby assured, in-
somuch as it is well established that the traceDxx+Dyy

and the determinant

|D| =

∣

∣

∣

∣

Dxx Dxy

Dxy Dyy

∣

∣

∣

∣

(19.26)
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of the deformation tensor (19.14) are invariant (G. Joos
and Th. Kaluza [7]; W. Weizel [13],[14]).

By means of the relation (19.25), it is simple to ex-
amine which horizontal flows in the atmosphere lead
to deformationless movement of individual air parcels.
Since in this case Dxx = Dyy = Dxy = 0 must apply,
(19.25) reduces to the equation

(

∂v

∂s

)2

+R2 = 0, (19.27)

which involves the two conditions:

∂v

∂s
= 0 (19.28)

and

R = S − v
∂α

∂s
= 0. (19.29)

The first condition (19.28) is fulfilled by a stationary
flow gradient as a consequence of flow parallel to the
isobars (A. Defant and F. Defant [4]). Assuming that
the air parcel motions are deformationless, the second
condition (19.29) means that the spin S must agree with
the convection of the flow direction; in the special case
of geostrophic flow (∂α/∂s = 0), S = 0.

Consider when the geostrophic flow blows in the x-
direction, with shear due to the change of the wind ve-
locity vx in the gradient-parallel y-direction, thus the air
parcels possess a spin S, its magnitude agreeing with
the shear, whereby the signs of S and Dxy are opposite.
In consideration of (19.29), the condition (19.25) now
demands

−D2
xy + S2 = (S +Dxy)(S −Dxy) = 0, (19.30)

which is satisfied sinceDxy = 1
2
(∂vx/∂y) from (19.15)

and S = −1
2
(∂vx/∂y) from (19.18) and S + Dxy = 0

identically. The spin is negative (anticyclonic) with pos-
itive shearing, and vice versa.

Consider the deformation of a horizontal square into
a rhombus by the shearing effect 1

2
(∂vx/∂y). This op-

eration turns the coordinate system of the original or-
thogonal diagonals in such a way that the orthogonality
of the diagonals is conserved, according to a theorem of
geometry. This turning is a simple example of the spin.
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Theoretische Mechanik. Berlin (Göttingen)
Heidelberg 1961, S. 79.

[9] Ramsey, A. S.: A Treatise on Hydromechanics. Part
II. Hydrodynamics. Fourth Edition. Reprinted.
London 1947, p. 27.

[10] Serrin, J.: Mathematical Principles of Classical Fluid
Mechanics. Handbuch der Physik, Bd. III/1. Berlin
(Göttingen) Heidelberg 1959, p. 139.

[11] Sutton, O. G.: Micrometeorology. A Study of
Physical Processes in the Lowest Layers of the
Earth’s Atmosphere. London 1953, p. 23.

[12] Tietjens, O.: Hydro- und Aeromechanik nach
Vorlesungen von L. Prandtl. Erster Band. Zweite
Auflage. Wien 1944, S. 75.

[13] Weizel, W.: Physikalische Formelsammlung. Erster
Band. Mannheim 1962, S. 48.

[14] Weizel, W.: Lehrbuch der Theoretischen Physik.
Erster Band. Physik der Vorgänge. Berlin (Göttingen)
Heidelberg 1963, S. 142.

51



20 ERTEL (1970b): Spin and deformation tensor in connection with isogons and
isotachs in two-dimensional streaming fields

Summary

In two-dimensional streams the acceleration can be ex-
pressed by isogons and by equivelocity contours, but it can
be demonstrated also as a function of the two-dimensional de-
formation velocity and of the tensor of spin of fluid particles.
On the basis of the condition of compatibility a connection of
general validity can be obtained between all four mentioned
quantities for both cases. That connection is quite indepen-
dent both from the kind of fluid and from the characteristics
in time of the streaming field.

1. Introduction

In recent years, the field of hydrodynamics has
adopted a remarkable development by introducing pa-
rameters from differential geometry (see, for example,
H. FORTAK [2], M. OLBERG [3]). Continuing in this
vein, the present work links elements of the kinematics
on large scales (macro-kinematic parameters: Isotachs
and Isogons) with elements of the kinematics on small
scales (micro-kinematic parameters: Spin and compo-
nents of the deformation rate of the individual fluid par-
ticles).

2. Symbols

From the compatibility condition (H. ERTEL [1])
∣

∣

∣

∣

∣

∣

∣

∣

Dxx −
∂v

∂s
Dxy − S + v

∂α

∂s

Dxy + S − v
∂α

∂s
Dyy −

∂v

∂s

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (20.1)

we get two forms of the convective acceleration of
two-dimensional flow fields, where, with an orthogonal
cartesian coordinate system (x, y), the following sym-
bols are used:

Dxx =
∂vx
∂x

,

Dyy =
∂vy
∂y

,

Dxy = Dyx =
1

2

(

∂vy
∂x

+
∂vx
∂y

)

,

(20.2)

which are the components of the deformation rate ten-
sor associated with the velocity components (vx, vy).
Furthermore, a fluid particle’s spin (for example, O. G.
SUTTON [5]) is

S =
1

2

(

∂vy
∂x

−
∂vx
∂y

)

, (20.3)

the magnitude of the flow velocity is

v =
(

v2
x + v2

y

)
1

2 , (20.4)

and the isogon angle, considered positive with counter-
clockwise rotation with respect to the x-axis, is

α = tan−1

(

vy
vx

)

. (20.5)

The curves v =const are the isotachs and the curves
α =const are the isogons (isoclines). The operator ∂/∂s
in (20.1) is the derivative along the streamline. The
derivative in the perpendicular direction, in the sense
of counterclockwise rotation, is designated as ∂/∂n, so
one can write

Dxx +Dyy =
∂vx
∂x

+
∂vy
∂y

=
∂v

∂s
+ v

∂α

∂n
(20.6)

and

2S =
∂vy
∂x

−
∂vx
∂y

= −
∂v

∂n
+ v

∂α

∂s
, (20.7)

with the aid of

vx = v cosα, vy = v sinα (20.8)

and

∂

∂s
= cosα

∂

∂x
+ sinα

∂

∂y
,

∂

∂n
= − sinα

∂

∂x
+ cosα

∂

∂y
.

(20.9)

3. A relation between macro- and micro-kinematical
parameters in the flow field

Instead of introducing three separate components of
the deformation rate tensor, it is convenient to form a
microkinematic parameter which is a combination of the
components, namely the determinant

D =

∣

∣

∣

∣

Dxx Dxy

Dxy Dyy

∣

∣

∣

∣

. (20.10)

Such a quantity has the property of invariance under co-
ordinate transformations (e.g., W. WEIZEL [6]). Then,
it is a matter of developing a relationship between the
two macrokinematic parameters (v, α) and the two mi-
crokinematic parameters (S,D).
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The derivation of this relationship is then very sim-
ple. Expanding the compatibility determinant (20.1),
the equation

(

∂v

∂s

)2

−
∂v

∂s
(Dxx +Dyy)

+D +

(

S − v
∂α

∂s

)2

= 0 (20.11)

is obtained. First, (20.6) is substituted into (20.11):

−v
∂α

∂n

∂v

∂s
+D +

(

S − v
∂α

∂s

)2

= 0. (20.12)

Then, substituting the expression given for 2S in (20.7)
into
(

S − v
∂α

∂s

)2

= S2 − 2Sv
∂α

∂s
+ v2

(

∂α

∂s

)2

(20.13)

yields

(

S − v
∂α

∂s

)2

= S2 + v
∂α

∂s

∂v

∂n
, (20.14)

which then transforms (20.12) into

v

(

∂α

∂s

∂v

∂n
−
∂α

∂n

∂v

∂s

)

+D + S2 = 0, (20.15)

the sought-after equation that represents the relationship
between v, α, D, and S. Using the orthogonal carte-
sian coordinates (x, y) instead of the natural coordinates
(s, n), one can also write

v

(

∂α

∂x

∂v

∂y
−
∂α

∂y

∂v

∂x

)

+D + S2 = 0, (20.16)

since the terms in parentheses in (20.15) and (20.16) are
invariant under rotations of the two-dimensional coordi-
nate system about the normal z-direction (x, y, z = co-
ordinate system). Applying the symbols of vector anal-
ysis, the equations (20.15, 20.16) take on the form

v (∇α×∇v)z +D + S2 = 0, (20.17)

where the cross product represents vector multiplication
of the horizontal gradients of α and v.

As a sample calculation, we consider a circular vor-
tex centered at an origin r = 0 with constant angular ve-
locity ω, like that for rigid body rotation. In this case, all
deformation components vanish (e.g., J. SERRIN [4]),
thus D dissappears. Here v = rω,

∂

∂s
=

∂

r∂α
,

∂

∂n
= −

∂

∂r
,

and equation (20.15) immediately results in:

−ω2 + S2 = 0, (20.18)

that is, the spin of the individual fluid particles corre-
sponds to the angular velocity of the entire circular vor-
tex.

It is still noted, that the equations (20.15), (20.16)
and (20.17) apply to arbitrary fluids, as well as to sta-
tionary and nonstationary two dimensional flows, ac-
cording to the purely kinetic nature of the generally ac-
cepted compatibility determinant.
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21 ERTEL (1970c): Transformation of the differential form of the Weber hydro-
dynamic equations in relation to the Earth’s rotation

Summary

We derive a system of equations that originate from the
differential form of the Weber formulas of hydrodynamics,
including the effects of the Earth’s rotation. With this exten-

sion the Weber formulas are of importance for meteorology
and hydrography. The direct relationship of the extended We-
ber formulas with the circulation theorem of V. Bjerknes is
easily deduced, as is the variational principle of atmospheric
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dynamics of H. Ertel.

1. Symbols

In the notation of vector and tensor analysis, in-
cluding the summation convention, the hydrodynamic
momentum equations for autobarotropic flows, relative
to an orthogonal cartesian coordinate system xj (j =
1, 2, 3) fixed with respect to the rotating Earth, can be
written

dvj
dt

− 2ωjk vk = −
∂W

∂xj
, (21.1)

where d/dt = individual (material) time derivative,
vj = dxj/dt = velocity components, ωjk = −ωkj =
Coriolis parameters (j, k = 1, 2, 3) for the Earth’s rota-
tion, W = potential energy = V +

∫

αdp, V = poten-
tial for the force of gravity, and

∫

αdp = autobarotropic
function of the specific volume α = α(p). The origin
xj = 0 of the coordinate system is any point on the
Earth’s axis.

2. Differential form of the Weber equations

The Weber equations of hydrodynamics use the
time-independent Lagrangian coordinates ai (i =
1, 2, 3) as labels of individual particles; they are ob-
tained from the Euler equations (21.1) through multi-
plication by ∂xj/∂ai and summation over the index j,
resulting in the Lagrangian system

dvj
dt

∂xj
∂ai

− 2ωjk vk
∂xj
∂ai

= −
∂W

∂ai
. (21.2)

Because

dvj
dt

∂xj
∂ai

=
d

dt

(

vj
∂xj
∂ai

)

−
∂

∂ai

(

v2

2

)

, (21.3)

where v2 = vjvj , we can write (21.1) as

d

dt

(

vj
∂xj
∂ai

)

− 2ωjk vk
∂xj
∂ai

=
∂Ω

∂ai
, (21.4)

where Ω is the difference between kinetic and potential
energy:

Ω = 1
2
v2 −W, (21.5)

which is the (Helmholtz) kinetic potential.
In the absense of rotation (ωjk = 0), V (inW and/or

Ω) assumes the simple meaning of the gravitational po-
tential. By time integration of the formulas (21.4), to-
gether with ωjk = 0, the Weber formulas would result
(Ref.: [3]–[10]). Thus, the formulas (21.4) can be re-
garded as the differential form of the Weber formulas
with the inclusion of the Earth’s rotation.

3. Transformation of the differential form of the We-
ber formulas with inclusion of the Coriolis terms

We now try to transform the formulas (21.4) in such
a manner that the Coriolis terms, −2ωjkvk(∂xj/∂ai) =
−2ωjk(dxk/dt)(∂xj/∂ai), can be split into two parts
involving the operators d/dt and ∂/∂ai. For this pur-
pose the following identity is useful:

2ωjk vk
∂xj
∂ai

=
∂

∂ai

(

ωjk xj
dxk
dt

)

−
d

dt

(

ωjk xj
∂xk
∂ai

)

.

(21.6)

The correctness of this identity can be easily verified by
evaluation of the derivatives with consideration of the
commutative property of the operators d/dt and ∂/∂ai.
The first term of the right side of (21.6) can be expanded
as

∂

∂ai

(

ωjk xj
dxk
dt

)

= ωjk
∂xj
∂ai

dxk
dt

+ ωjk xj
d

dt

∂xk
∂ai

,

(21.7)

and the second term as

−
d

dt

(

ωjk xj
∂xk
∂ai

)

= −ωjk
dxj
dt

∂xk
∂ai

− ωjk xj
d

dt

∂xk
∂ai

.

(21.8)

The addition of (21.7) and (21.8), with consideration of

ωjk
∂xj
∂ai

dxk
dt

− ωjk
dxj
dt

∂xk
∂ai

= ωjk vk
∂xj
∂ai

− ωkj vk
∂xj
∂ai

(21.9)

and the antisymmetry of the Coriolis components ωkj ,
verifies the identity (21.6).

The substitution of the identity (21.6) in (21.4)
transforms the differential form of the Weber formulas
with the Coriolis terms into the system

d

dt

(

vj
∂xj
∂ai

+ ωjk xj
∂xk
∂ai

)

=
∂

∂ai

(

Ω + ωjk xj
dxk
dt

)

,

(21.10)

which is very suitable for applications to meteorology
and hydrography, as the following examples show.

4. Applications
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The multiplication of the formulas (21.10) with the
differentials dai of the time-independent Lagrangian la-
beling coordinates ai and summation over the index i
results in

dai
d

dt

(

vj
∂xj
∂ai

+ ωjk xj
∂xk
∂ai

)

= d

(

Ω + ωjk xj
dxk
dt

)

,

(21.11)

from which, by integration over a closed material curve
C, it follows that

d

dt

∫

C
(vjdxj + ωjk xj dxk) = 0. (21.12)

This is the conservation theorem for the absolute cir-
culation in autobarotropic currents (Ref.: [1]), where
∫

C vj dxj is the circulation relative to the Earth and the
second integral is twice the absolute value of the Earth’s
rotation vector (ω) multiplied by the projection F of the
closed curve C on the equatorial plane (or on a plane
parallel to the equatorial plane). In other words,

∫

C
ωjk xjdxk =

∫

C
ωjk

1
2
(xjdxk − xkdxj)

= 2ωF,

(21.13)

where ω1 = ω23 = −ω32, ω2 = ω31 = −ω13, and ω3 =
ω12 = −ω21 are the three components (ω1, ω2, ω3) of
the Earth’s rotation vector.

In just as simple a fashion one can obtain from
(21.10) the variational principle of atmospheric dynam-
ics (Ref.: [2]). Multiplying (21.10) by the variations
δai of the time-independent Lagrangian labeling coor-
dinates and then summing over the index i, we obtain
the formulas

d

dt
(vj δxj + ωjk xj δxk) = δai

∂

∂ai

(

Ω + ωjk xj
dxk
dt

)

= δ(Ω + ωjk xjvk).

(21.14)

Integrating over the time interval t2−t1, and noting that
the variations δxj = (∂xj/∂ai)δai vanish at the end
points t1 and t2 for all indices j, the variational princi-
ple of atmospheric dynamics in the form

0 = δ

∫ t2

t1

Ldt (21.15)

results where the (generalized) Lagrange function

L = Ω + ωjk xjvk, (21.16)

contains the kinetic potential Ω and the parallel compo-
nent of the spin of a particle around the coordinate origin
(which is on the Earth’s axis), since the term ωjkxjvk
represents simply the dot product of the Earth’s rotation
vector with the spin vector.
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