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ABSTRACT

We propose a quasi-balance dynamical system of equations for slowly evolving, large-scale motions in the
tropics. Unlike other balance schemes, equatorially trapped Kelvin waves are included. Following the lead of
Gill, this system is based on the neglect of the meridional acceleration (the so-called long-wave approximation).

Consistent budgets for kinetic energy and potential vorticity are derived, with those quantities appropriately
redefined. Unlike the quasi-geostrophic system, vertical advection of potential vorticity as well as of potential
temperature is relevant. A primary circulation is defined, involving the zonal wind, geopotential, and potential
temperature, such that potential vorticity depends on latitudinal and vertical gradients of the primary circulation.
A residual secondary circulation is governed by an elliptic equation for a streamfunction in the meridional
plane. The invertibility principle is affected by the Kelvin waves with zero potential vorticity.

The eigenfrequencies for a tropospheric first internal mode are obtained both for the primitive equations and
the quasi-balanced system. Applications of this dynamical system are proposed for diagnostic analysis and for
investigating the slow evolution of the large-scaie flow in the tropics.
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1. Introduction

Quasi-geostrophic theory provides a dynamical
framework for understanding the slowly evolving, me-
teorologically significant large-scale phenomena in
middle latitudes. Within this approximation the faster
gravity waves are filtered out by neglect of the divergent
component of the horizontal flow, which is typically
smaller than the rotational component by a factor of
the Rossby number.

Balanced dynamical theories have been proposed for
the tropics. Both linear balance and nonlinear balance
approximations have been used to filter out the faster
divergent motions by neglecting the time rate of change
of divergence in the divergence budget. These approx-
imations suffer from both a practical and a dynamical
disadvantage. An elliptic equation must be solved to
obtain the rotational wind from the mass field; in prac-
tice, there can be significant regions of the tropics where
the ellipticity condition is not satisfied (Paegle and
Paegle 1976) for the slow motions. Dynamically, a class
of slow motions exists in the tropics that are balanced
in the meridional component of the momentum equa-
tion but act as gravity waves in the zonal component;
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these equatorial Kelvin waves are excluded from the
balance approximations (Moura 1976). Equatorial
Kelvin waves have been postulated as a description of
wave phenomena in the stratosphere (Wallace and
Kousky 1968), in the troposphere (Wang 1988), and
in the ocean (Busalacchi and O’Brien 1981). As dem-
onstrated by Haltiner and Williams (1980, p. 69), the
usual balance equations formulated in isobaric coor-
dinates suffer from two additional deficiencies: namely,
the lack of a simple potential vorticity conservation
equation and the lack of a simple equation for the sec-
ondary circulation, as the omega equation provides for
the ageostrophic motions in quasi-geostrophic theory.

Our search for a balanced dynamical system appli-
cable to the tropics is guided by observations. Wallace
(1983) noted that the zonal component of the station-
ary wave kinetic epergy dominates the meridional
component from the deep tropics to 45°N, and ascribed
this structure to the fact that the meridional scale of
the waves is much shorter than the zonal scale. Wallace
and Blackmon (1983) pointed out a similar relation-
ship for low-frequency fluctuations, with periods longer
than 10 days, especially in lower latitudes. Hence the
slowly evolving circulations in the tropics, with zonal
velocities dominating over meridional velocities, are
intimately related to the anisotropy of horizontal scales
for the geopotential field. .

In this paper we propose a balance scheme for trop-
ical motions that includes Kelvin waves as well as long
Rossby waves. It is based fundamentally on the em-
pirically derived assumption that for slowly evolving,
large-scale motions in the tropics (and also the extra-
tropics, for that matter), the meridional pressure-gra-
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dient force balances the Coriolis force. In section 2 we
show that this balance in the meridional momentum
equation can be obtained from a consideration of the
small ratio between meridional and zonal length scales.
Although similar to the quasi-geostrophic approxi-
mation the distinction of this quasi-balance approxi-
mation (i.e., neglecting Dv/Dt) is that the approxi-
mation is applied to the meridional wind equation
rather than to the divergence equation. As a direct im-
plication, equatorial Kelvin waves are retained, whereas
gravity waves, including the mixed Rossby-gravity
mode, are filtered from the system.

In section 2 we investigate the question of how the
meteorological primitive equations [including Phillips’
traditional approximation, from Phillips (1966)] are
modified by the neglect of meridional acceleration. The
budgets for kinetic energy and potential vorticity are
considered and found to take consistent forms with
appropriate redefinitions of conserved quantities. Sec-
tion 3 establishes a prognostic primary circulation and
a diagnostic/elliptic secondary circulation. Section 4
treats the issue of invertibility of the potential vorticity
to obtain the quasi-balanced mass and wind fields of
the primary circulation. In section 5 we discuss the
normal modes of the so-called first internal mode of
the quasi-balance system, both with a resting basic state
and a more representative distribution of tropical east-
erlies and midlatitude westerlies. Section 6 emphasizes
our conclusions and implications for future research.

2. Balance model equations

We develop our quasi-balance system from the hy-
drostatic primitive equations on a sphere, consisting
of a zonal momentum equation, meridional momen-
tum equation, hydrostatic approximation, conserva-
tion of mass, and thermodynamic energy equation:

el (1a)
5%?+§tan¢+(29sin¢)u=—% (1b)
% = G(z2)8 (1c)

meordi * asesges g0 (O
%f =0 (le)

Here M = a cos¢(Qa cos¢ + u) is the angular mo-
mentum per unit mass, ® is geopotential, F is a zonal
body torque, a is the earth’s radius, A is longitude, and
¢ is latitude. The vertical coordinate z can represent
several different vertical coordinate systems, as indi-
cated in Table 1. The particular coordinate system is
arbitrary; the key feature is that the “density function”
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o(z) and the hydrostatic proportionality coefficient
G(z) be prescribed functions only of the vertical co-
ordinate. With the hydrostatic approximation, sound
waves are eliminated and a simple one-dimensional
relationship is maintained between the mass variable
& and the temperature variable 8, which we will gen-
erally consider to be the potential temperature. In the
absence of diabatic heating Q, the variable 6 is con-
served. The Lagrangian time rate of change following
a parcel is D/Dt.

D 9 + _4d u 9 v w 3
Dt " at acos¢ N  add dz’
where (u, v, w) are the velocity components in the

(eastward, northward, upward) directions.

The fundamental balance approximation is in the
meridional momentum equation. For clarity, we have
introduced a balance tracer § that equals one in the
primitive equations, and which we set to zero in our
balance system. “Balance” in this context means a gra-
dient wind type balance between the zonal wind and
the meridional pressure gradient force. This dynamical
approximation is the logical extension of Gill’s (1980)
equatorial B-plane, long-wave approximation to the
sphere.

a. Scale analysis

The derivation of our balance system from the
primitive equations consists of ignoring the meridional
acceleration Dv/Dt in (1b) (i.e., 6 = 0). In order to
examine the conditions under which this approxima-
tion is justified, we define the following characteristic
scales:

v™!  time scale

U* magnitude of u
V* magnitude of v
L¥ spatial scale in A
L% spatial scale in ¢.

With this scaling we estimate the order of magnitude
of the important terms in the horizontal momentum
equations as

g_? - o= aci:a)\ (22)
vU*  fV* %;1
%1; + fu ~ —% (2b)
we oo S

Following the long-wave approximation, we treat
those phenomena for which the zonal scale of variation
(L%¥) exceeds the meridional scale (L¥); ie, L}
< L¥. We ask how the meridional acceleration
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TABLE 1. Vertical coordinate systems, where p, and 8, represent the surface reference states, p, = p,/(R8,) and the Exner function, =, is
defined as IT = ¢,(p/p,)". The parameter H = ¢,0,/g is the scale height of an adiabatic atmosphere with potential temperature 6,. Primed

variables represent perturbations from a horizontally averaged state.

Name z p(2) G(z) ®
/] g z x=1
Pressure H{l—-— o Sl -= ;
( Po) P 5. ( H) geopotential
Log pressure H ln(;”) poe @ 05 ke D geopotential
(4
. P\ 2 \(= g
Pseudo-height H{l1-(= ol — = -2 :
gh ( ( pa) ) [ ( H) 0, geopotential
Height (anelastic) z o(2) s G
Height (Boussinesq) z Do 05 2
o °

(Dv/Dt ~ vV'*) compares to the meridional pressure
gradient (3®/adp ~ AP/ L¥) for two different cases
of the zonal momentum equation (2a):

e Case (1): The zonal acceleration and zonal pressure
gradient dominate (as in Kelvin waves), so that

AP "
vU* ~ — and vU* = fV*
L¥
Then
Do/Di| VALY L3 0
0P /adep U* LY [ L¥

e Case (ii): The Coriolis term and zonal pressure
gradient dominate (as in long Rossby waves), so that

P

I3 vU* € fV*.

and

Then
Dv/Dt v L

0b/adp| fL¥

FIt (2d)

In both cases the meridional acceleration can be ne-
glected in comparison with the meridional pressyre
gradient so long as the time scale is no faster than the
rotational time scale (v/ /< 1). For tropical phenomena
the appropriate value of f is at a latitude corresponding
to one Rossby radius away from the equator, typically
around 10°, so that the rotational time scale f !
~ 15 day.

We note that meridional advection is retained in
our approximated system. This is analogous to the hy-
drostatic approximation in which the vertical accel-
eration Dw/Dt is neglected, but vertical advection is
retained in the system. For the hydrostatic assumption
1o be valid, conditions like (2c) and (2d) are invoked

except that the meridional length and velocity scales
L% and V'* are replaced by the vertical length and ve-
locity scales L¥ and W*. Finally, we note that our
approach differs fundamentally from the work of
Chang (1977); in his system v = 0 so that no meridional
advection was allowed. ‘

Lorenz (1960) was among the first to realize that
approximations based upon a scaling analysis do not
generally maintain analogues of the exact conservation
laws. In other words, the combination of scale analysis
plus proper conservation laws is a better guarantee of
an acceptable approximation than scale analysis alone.
With proper conservation relations, the governing dy-
namical equations can preserve the underlying Ham-
iltonian structure and retain analogues of all the exact
conservation laws (e.g., Salmon 1988; Magnusdottir
and Schubert 1990). Thus, it is important for a dy-
namic prognostic scheme to be characterized by ap-
propriate conservation relations. Derivations of con-
servation relations with the tracer é are presented below.

b. Conservation relations

Hoskins (1975) identified four “pseudo-conserva-
tion relations” of the primitive equations that should
be satisfied by any approximate dynamical system:
conservation of potential temperature, conservation of
potential vorticity, a three-dimensional vorticity equa-
tion, and an energy equation. Since the potential tem-
perature budget is unmodified, there is no need to dis-
cuss it explicitly. In fact, our quasi-balance approxi-
mation is closely related to the geostrophic momentum
approximation of Hoskins: if one takes his full equa-
tions with the geostrophic momentum approximation,
sets v, = 0 through the long-wave approximation, and

- allows the full variation of f along with appropriate

spherical geometry, one obtains essentially our quasi-
balance set.
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Equation ( 1a) states explicitly that angular momen-
tum is conserved in the absence of zonal pressure gra-
dients and body torques. Here we show that kinetic
energy and potential vorticity are conserved quantities
if they are redefined. Such redefinition follows the pro-
cedures used in presently accepted systems, such as the
hydrostatic, quasi-geostrophic, and geostrophic mo-
mentum approximations.

From (la) and (1b) we obtain a kinetic energy
budget,

2 2
D(u v 3)

Di 2+62) veV® + uF,
where v is the horizontal velocity vector. It is clear
from (3) that this balance system (with 6 = 0) applies
to phenomena in which the zonal velocity predomi-
nates over the meridional velocity component.
Equations for the three components of the absolute
vorticity vector are obtained by taking the curl of the
horizontal momentum equations and the hydrostatic
relation. Defining the absolute vorticity vector

o
3z’ 9z
v o(u cosg)

0 - 4

a cospar acos¢6¢>) )

and the three-dimensional velocity divergence

ZE(EHT’ {)=(_6 ,295in¢

_ u (v cosg) Qﬁ’
u= a cos¢oA + a cos¢ip * 7 )
we find
Dg _ (V- G
Dr (£ Vu—(V-u)E+ 230
tang 9 [ u? v?
a az(z +52) (62)
Dr_ o (vuyy G L OF
Dt (V)0 = (V- u)y acos¢ ON acos¢ 9z
(6b)
L B
Dz"(? Viw—(V-u)¢ 20056 209 (6¢)

We see that the hydrostatic approximation has already
eliminated the vertical velocity from the vorticity vector
(i.e.,0w/dyin £ and —(dw/dx)in n). The zonal balance
approximation has the corresponding effect of elimi-
nating the meridional velocity v. As a direct result the
zonal component of the vorticity vector vanishes, so
that the appropriate vorticity vector lies in the merid-
ional plane and depends only on the zonal component
of the flow.

A conservation law for potential vorticity follows
from the vorticity relations combined with conserva-
tion of mass (1d) and thermodynamic energy (le).
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Defining potential vorticity
pq =g Vi
g0 ou b
dz acos¢dN 9z ade
ov du cos¢ \ a0
i 0 - — (7
t (29 sing + acospdN a cos¢6¢>) 0z )
some manipulation leads to
Dq , [+(V8 X VF)
— =g VQ+———. 8
P Dt ¢€-ve acos¢ (8)

Unlike the symmetric case treated by Stevens (1983),
the meridional momentum equation is explicitly re-
quired in deriving the potential vorticity budget. How-
ever, when the balance approximation (1b with § = 0)
is made, the potential vorticity is formally independent
of v and 96/dX. Only the zonal flow u, and meridional
and vertical gradients of potential temperature are in-
volved in the potential vorticity.

3. The primary and secondary circulations

On a spheére it is useful to introduce the latitudinal
coordinate . = sing in which equal increments in u
contain equal increments of surface area. Simulta-
neously, we introduce U = u cos¢ and V = v cos¢,
which is proportional to the mass flux across a latitude
circle. With these definitions, three-dimensional ad-

vection becomes

vo 0

wv=—2 a0 +w
acos¢ ON  aded az

__ U 8. ¥a, 8
a(l—p®)d\  adu 9z’
The continuity equation (1d) can be expressed
1 d(pU)
1—u?) o
10
LLaer) | aew)
a du a4z
Henceforth we set = 0 for the zonal wind balance
approximation. The gradient wind balance equation

(1b) then gives a diagnostic relation between meridi-
onal pressure gradient and angular momentum:

i - My =2,
m

(9)

0=V-(pu)= a(

(1d)

(1v)

where angular momentum M consists of the earth’s
angular momentum M= Qa?(1 — u?) plus the relative
component M = qU. Here f,(n) is a latitudinal func-
tion,

u/a? sing

(=22 dZcos'e’

filp) =

(10)
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Thermal wind balance is obtained by cross differen-
tiating (15") and (1 ¢) to define the baroclinicity B:

(11)

The primary circulation consists of those dynamical
fields involved directly in the balance relations (&, 8,
M) and derivable directly from them (U, , ¢). In a
prediction scheme, only one of the primary field vari-
ables can be consistently prognosed: the others must
be diagnosed through the balance relations from the
prognostic variable. Since three prognostic relations
have appeared—( 1a) for angular momentum, ( l¢) for
potential temperature, and (8) for potential vorticity,
any one of these three could be used in the time inte-
gration procedure. However, for reasons indicated in
section 4 on invertibility, it seems that a prediction
scheme is best formulated for 6 or M rather than the
derived quantity ¢. This aspect differs markedly from
other balance systems, such as quasi-geostrophic and
semigeostrophic dynamics, in which the time evolution
of g is generally calculated.

The secondary circulation is the unbalanced com-
ponent of the flow that is obtained by using thermal
wind balance to eliminate dM /3t and 36/dt between
Egs. (1a) and (le). It is analogous to the ageostrophic
flow calculated from the diagnostic, elliptic omega
equation in the quasi-geostrophic system, and consists
of the vertical motion and an associated divergent hor-
izontal wind. Two diagnostic elliptic equations arise
for the secondary circulation because the flow in the
meridional plane is both rotational and divergent. The
divergent component can be obtained from the con-
tinuity equation, and the rotational component can
then be calculated from the differentiated thermal wind
balance [cf. Eq. (17) below].

A simpler procedure involving a single elliptic equa-
tion is possible if we define an additional variable for
the primary circulation. Let V be that part of the me-
ridional flow V that would combine with U for non-
divergent flow:

1 U 9V
_________.__+_=
a(l — u?) ON  adu 0 (12)
or
. “ U du fﬂax
= — =— —du. (1
4 19N 1 —p? a_“”\du (13)

Here A = U/[a(1 — p?)] is the relative angular velocity
about the polar axis. (Note that V" vanishes identically
for zonally symmetric flow, but is nonzero for Kelvin
waves.) .

Then we define V' = V' — V as the meridional com-
ponent of the secondary circulation. With definition
(13), the continuity equation (1d) can be expressed
without further approximation as
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pV') 6(pW)

= Q. 14
adu 0z (14)

Hence we can define a streamfunction y for the sec-
ondary circulation by
Y ay
Vie—Z; pw=—.
p 0z p adu
It is also worth noting that the vertical component of
vorticity and the horizontal divergence can both be
expressed as u-derivatives, consistent with the “long-
wave approximation” in which meridional scales are
negligible compared to zonal scales:

(15)

U G
a? Bp a&p adu
When the zonal velocity U is greater than the secondary
meridional velocity V", it follows that the vertical com-
ponent of relative vorticity will generally exceed the
horizontal divergence.

Once we have defined the streamfunction ¢ for the
secondary circulation, a diagnostic secondary circula-
tion equation immediately follows. Differentiating the
thermal wind relation (11) with time

oM
-G — 2M —
o (az ) =fig ( ot )
then substituting from the prognostic equations (1a)
and (le), and finally rearranging terms, we obtain

W Lo W o
3u(Aap+B ) a(Ba,LJrCaz)

k'?.'=— (16)

(17)

= a[é; (GQ) + py (ZfIMF)J . (18)

Here p4 = G(860/9z) is proportional to the square of
the Brunt-Viisild frequency (N?) and represents the
gravitational stability. Baroclinicity is represented by
pB, and pC = —f,;(dM?*/dy) is proportional to the
square of the inertial frequency ( {{) and represents the
inertial stability. The variables Q and F represent the
sources of potential temperature and angular momen-
tum, respectively, as modified by the asymmetric pres-
sure gradient force and advections:

. 0 Voo
= 1
0=0- ( +a6 ) (19a)
. oM V oM\ 4d
= —_— | -—. 19b
F=F- (A 6)\+a du ) EN (19b)

Equation (18) is the diagnostic equation for the sec-.
ondary circulation, just as in the Eliassen (1951) bal-
anced vortex. However, it apphes also to the asym-
metric balanced flow. Solving ( 18) is the basis for com-
puting the secondary circulation once the primary
circulation, torque F, and heating rate Q are known.
A major advantage of our system is that the transient
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aspects of geostrophic and gradient adjustment are fil-
tered from the diagnosed circulation.

Since the coefficients in (18) generally depend on
longitude as well as latitude and height, this two-di-
mensional equation must be solved at each longitude
or for each zonal Fourier wavenumber. The compu-
tational expense of solving (18) repeatedly can be min-
imized, however, by employing multigrid techniques
as demonstrated by Ciesielski et al. (1986). For ex-
ample his results showed that a multigrid scheme solved
an elliptic equation similar to ( 18) to the level of trun-
cation error 26 times faster than an optimal successive-
over-relaxation (SOR ) scheme.

The differential equation (18) is elliptic, parabolic
or hyperbolic according to whether AC — B? is greater
than, equal to, or less than zero, respectively. In general,
(18) s elliptic and is described as such throughout this
paper. However in limited regions (e.g., areas of strong
anticyclonic flow near the equator), the coefficient C
may be negative, resulting in inertial instability. The
longwave approximation eliminates the exponentially
growing mode of this instability, but does not eliminate
the hyperbolic region. To circumvent this problem
Dunkerton (1989} has suggested resetting C to zero if
it becomes negative. In solving a meridional circulation
equation similar to (18 ), Hack et al. (1989 ) found that
a slightly nonelliptic region near the equator posed no
problems when solving their equation with a standard
relaxation procedure.

4. The invertibility principle

Hoskins et al. {1985 ) emphasized the utility of “po-
tential vorticity thinking” in understanding large-scale
dynamical processes. A key aspect of this approach is
the availability of an invertibility principle for balanced
dynamical systems, by which it is possible to obtain
the primary circulation field variables uniquely from
the spatial distribution of potential vorticity at any in-
stant in time, given appropriate boundary conditions.

Our quasi-balanced system retains this general
property with one very significant exception. It is clear
from Eqs. (1) that equatorial Kelvin waves are in-
cluded, since the neglected meridional acceleration
vanishes identically for Kelvin waves on the equatorial
B-plane. It is also easily shown with linear shallow water
equations that Kelvin waves have zero potential vor-
ticity, in common with the general class of Poincaré
or inertia—gravity waves. Kelvin waves are invisible on
a potential vorticity map. Therefore if one inverts the
potential vorticity to obtain the primary circulation,
through Eq. (7), we would expect the Kelvin wave
component of the primary circulation to be missing.

It is for this reason that we have identified the present
approximation as quasi-balanced: a significant part of
the time-dependent flow can be predicted but is not
related to the potential vorticity field. Thus it appears
preferable to predict either the angular momentum or
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the potential temperature as the single prognosed vari-
able, rather than the potential vorticity, in a forecast
scheme. The temperature variable was predicted in a
symmetric calculation on an f“plane by Stevens (1984 ).

5. Normal modes

In order to test the limits of validity of the quasi-
balance system, it is useful to compare the wave char-
acteristics with and without the approximation. For
this purpose we have assumed a zonal mean flow that
depends only on latitude in a shallow water model on
a spherical earth. For a given zonal wavelength, the
following governing equations are solved using the
method described by Stevens and Ciesielski (1986) to
determine the eigenfrequencies and eigenfunctions. We
prescribe a global mean equivalent depth #, = 250 m
in the linearized shallow water equations:

§+ ) iu’— = du cos¢ "
ot acos¢ I a cos¢aod
+ oY 0 (20a
a cospor ( )
0 u 9 2u 0P’
— — v+ (f+= T — =
6(6t+ a cos¢ 8)\)v (f a tanq’;)u ade
(20b)
i) u 9 a(gh)
—+ — ¥+ ===
(61 acos¢ 6>\) ado v
ou’ v’ cos¢
+ =0.
gh(a CoSpIA acos¢6¢>) 0. (20¢)

In these equations # = h, + # represents the unper-
turbed depth of the fluid, where the variable part of
equivalent depth (#) was computed with the geo-
strophic wind relationship in the meridional direction,
d(gh)/ad¢ = fu. This form of the shallow water equa-
tions is similar to that used by Bennett and Young
(1981), except they replaced % by A, where it multiplies
divergence in (20c). This approximation eliminated
the troublesome regions of negative equivalent depth
(see below) in their problem, but also caused the loss
of conservation principles for potential vorticity and
energy.

We will consider three sensitivities for predomi-
nantly tropical internal waves:

1) Equatorial S-plane versus spherical geometry.

2) The quasi-balance approximation (6 = 0, 1).

3) A basic state at rest versus a climatological flow
with tropical easterlies and midlatitude westerlies.

Gill (1980) showed that with no mean flow on an
equatonal B-plane, long Rossby and Kelvin wave are
nearly nondispersive, and thus can be described as the
“long-wave approximation” when § = 0 is assumed.
The fast inertia—gravity waves and the n = 0 mixed
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Numerical solution: h, = 250m and #(g) = 0

025 ———F———F——
[
F * - -- balanced
3 \ system ]
0.20 | \ N =
F N —— primitive | 1
_ [ I equations
=]
e
>~ 0.15 -
S
5
Q
o]
g 0.10 -
o
[ 4
& ]
0.05 -
0.00 L

-15 -10 -5 0 5
longitudinal wavenumber: s

FiG. 1a. Dispersion diagram for the eigenfrequencies computed
numerically with a shallow water model on a sphere with a resting
basic state. Frequency eigenvalues normalized by (2Q) are plotted
as a function of longitudinal wavenumber (s). Solid lines represent
frequencies without approximation (6 = 1); dashed lines for quasi-
balanced system (6 = 0) described in the text. Dotted line represents
eigenfrequencies for n = 3 Rossby mode obtained analytically from
equatorial 8-plane dispersion relationship. The numerical indices as-
sociated with the dashed curves correspond to different meridional
structures.

Rossby—gravity wave are excluded. The highly disper-
sive, short-wave (large s) Rossby waves are poorly rep-
resented, as might be expected since for these waves
meridional velocities typically exceed zonal velocities.

Figure | displays the frequency eigenvalues as a
function of zonal wavenumber in the low-frequency
region of the dispersion diagram. Figure 1a shows the

eigenfrequencies on a sphere, with a resting basic state, |

obtained numerically with the model of Stevens and
Ciesielski (1986). In this case where & = 0, it follows
that 4 = Q or & = h,. Figure 1b plots the eigenfrequen-
cies on a sphere in the presence of the zonal mean
wind field given in Fig. 2a. Also shown are the absolute
vorticity (Fig. 2b), angular momentum (Fig. 2¢) and
depth of the fluid (Fig. 2d) associated with this wind
field. The effects of a nonzero /, due primarily to the
second term in (20c), are reflected in Fig. Ibby a 1-
2% decrease in the eigenfrequencies of the Kelvin mode
and up to a 7% increase in the other modes. We also
note that the presence of negative fluid depth at higher
latitudes (cf. Fig. 2d), the effects of which enter the
system through the third term in (20c¢), results in sev-
eral nonphysical instabilities that are not relevant to
the present discussion.

Under conditions of strongly equatorially trapped
waves, the spherical equations (20) asymptotically ap-
proximate those on a 8-plane for which the following
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Numerical solution: h, = 250m and %(y)

0.25 T \\ T 4 T S T
L . i
\
\ --- balanced 1
0.20 r N gystem 1
. = \ . -
F \ -—— primitive 1
_ AN \ equations |
=) \ 4
N -
~ 0.5 A
S )
5 J
= L )
5 0.10 ]
o 3 4
(]
&
0.05 | ]
000 bt -

-15 -10 -5 0 5
longitudinal wavenumber: s

FI1G. 1b. Same as Fig. 1a, except computations made using a basic
state given by the zonal! winds in Fig. 2a. Dashed-dotted line shows
the frequencies of a hypothetical disturbance advected westward in
a zonal current of —5 m s,

approximate dispersion relationship for Rossby waves

holds:
( S)
a

s 2
(2) +(2n + 1)B(gh,) ">

, (21)

o=

where s is the longitudinal wavenumber and 8 = 2Q/
a. According to §-plane theory (Lindzen 1967), the
solutions begin their exponential decay at latitudes +6,.
The parameter 8, is defined as:

0,=¢'4(2n + 1)/2, (22)

where ¢ = (2Qa)?/gh, and 7 is the number of nodal
crossings of the v-eigenfunction. Thus for the case ex-
amined here with s, = 250 m (e = 352), the solutions
for n = 1, 2 and 3 modes begin to decay within 23, 30,
and 35 degrees of the equator, respectively. Since the
n = 3 Rossby mode has the largest latitudinal extent
of the ones shown here, 8-plane geometry provides the
poorest approximation for this mode, and as a con-
sequence, the largest disparity between spherical and
B-plane results. This can be seen in Fig. 1a where the
dispersion curve from (21) is plotted for the n = 3
Rossby mode. The small difference between the two
dispersion curves for this mode shows that the S-plane
provides an accurate approximation to the sphere for
the equivalent depth used here.

With a resting basic state, the Kelvin wave is essen-
tially identical with and without the approximation,
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Zonal winds
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FiG. 2a. Mean (June-~-August) zonal winds (i7—from Newell et
al. 1974) that were used as basic state for numerical results shown
in Fig. 1b plotted as a function of x (i.¢., sine of latitude). Also shown
here is U = i1 cos ¢, where ¢ is latitude. The location of the model
grid points are indicated with tick marks along the top of the figure.

1.0

whereas Rossby dispersion curves begin to differ no-
ticeably beyond zonal wavenumber 2. In the primi-
tive equations, the group velocity reverses direction
at synoptic scales for the gravest modes [s? ~ (2n
+ 1)e'/?].

When a climatological mean flow is assumed, as in
Fig. 2a, the nondispersive character of the waves is re-
tained, with the Rossby waves propagating westward
somewhat faster than previously. These faster phase
speeds are due, in large part, to the Doppler-shifting
effect of the easterly flow in which these waves are pri-
marily embedded. The dashed-dotted curve in Fig. 1b
shows the frequencies of a hypothetical disturbance
advected westward in a zonal current of —5 m s ™!, The
most noticeable distinction between Figs. 1a and 1b is
that in the latter case the Rossby waves in the primitive

Angular momentum
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FIG. 2c. Angular momentum per unit mass of earth (M) and to-
tal (M) due to earth and zonal winds in Fig. 2a.
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FIG. 2b. Vertical component of earth’s vorticity (f) and absolute
vorticity ({) corresponding to wind profile in Fig. 2a.

equations have much higher frequencies that are sig-
nificantly closer to the quasi-balanced Rossby waves.
In fact, the wavenumber of zero group velocity occurs
for wavenumbers > 15, or zonal wavelengths much
shorter than 2700 km. For all the Rossby waves shown,
both phase speed and group velocity are westward. The
shorter the meridional scale (i.e., the larger ») is the
better the approximation. We infer that with represen-
tative basic state winds, the quasi-balance approxi-
mation might be useful for studying phenomena with
zonal scales beyond the lowest few wavenumbers (i.e.,
[s} > 2).

In Fig. 3 eigenfunctions are displayed over one
wavelength (2« /s) for the # = 1 Rossby mode at s
= —5 from Fig. 1. Viewing these eigenfunctions col-
lectively, we note that these modes are confined to
within approximately 30 degrees of the equator (i.e.,
u = £0.5) which one would expect with A, = 250 m.
With a resting basic state, the modes are symmetric
about the equator with little difference in amplitude

between the case with (Fig. 3a) and without (Fig. 3b)

h —Fluid Depth
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FIG. 2d. Fluid depth ( k), where h = h, + F, h, = 250 m, and h is
computed using the geostrophic relation and the zonal winds in Fig.
2a.
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the quasi-balance approximation. In addition, the
strong correspondence in the location of the pertur-
bation highs and lows in the @' field and the circulation
centers, implies a large geostrophic component to the
flow. In the presence of the climatological mean flow
of Fig. 2a, the modes are no longer purely symmetric
about the equator. This is especially noticeable in the

= | case (Fig. 3d) where the response in the & field
is a factor of 3 smaller in the southern (winter) hemi-
sphere. In addition, the obvious lack of geostrophic
balance in this case suggests that the neglected term,
(u/acosp)(dv’'/IN), in (20b) contributes significantly
to the primitive-equations modal structure.

6. Discussion and conclusions

A primary reason why midlatitude motions are un-
derstood better than tropical motions is that a hierarchy
of models exists for midlatitude flows. Since baroclinic
instability can be studied with the quasi-geostrophic
equations and frontogenesis with semi-geostrophic
theory, it.is not always necessary to resort to the prim-
itive equations. Unfortunately the present state of
modeling tropical motions is not as advanced. For ex-
ample, what balanced theory can be used to study the
40-50 day oscillation? Quasi-geostrophic theory cannot
be used in the tropics, while the geostrophic momen-
tum approximation associated with the semigeo-
strophic system has, until recently, only been applied
to midlatitude fand 3 planes. As in midlatitudes, our
ability to forecast and understand weather in the tropics
would be greatly enhanced by a spectrum of dynamical
models with varying degrees of complexity. Moreover,
a globally valid three-dimensional balanced theory
would unify midlatitude and tropical balanced theories
into one framework. The balanced system presented
in this paper is an effort in this direction, and, in this
sense, is complementary to the work of Shutts (1989),
who has proposed a planetary semi-geostrophic theory.

In this paper we have proposed a quasi-balance dy-
namical scheme as a means to isolate slowly evolving
meteorological phenomena. Fast inertia—gravity waves
are excluded, but equatorial Kelvin waves are retained.
This dynamic scheme follows directly from the long-
wave approximation of Gill (1980), but is extended
to spherical geometry and a stratified fluid. Concep-
tually, it is founded on the neglect of the meridional
acceleration of an air parcel in comparison with the
meridional components of the pressure gradient force
and the Coriolis force.

With this approximation, a “clean” expression for
potential vorticity is derived that depends only on
meridional and vertical gradients of the primary cir-
culation variables (u, 8). A key distinction from the
quasi-geostrophic system is that vertical advection of
potential vorticity is retained. Hence there are both
two-dimensional aspects of this approximate system
(namely, the neglect of the zonal component of the
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vorticity vector, consistent with the long-wave approx-
imation) and three-dimensional aspects (namely, ver-
tical advection) which are likely to be important for
tropical motions.

A generalized thermal wind relation, involving the
vertical gradient of angular momentum and the me-
ridional gradient of potential temperature, is used to
obtain a single diagnostic equation for the secondary
circulation. In the limit of zonally symmetric motions,
this elliptic equation becomes the Eliassen balanced
vortex equation for meridional streamfunction.

Since inertia—gravity waves and inertial instability
are excluded, we speculate that the key adjustment
process in the tropics is inertial adjustment rather than
the geostrophic adjustment of middle latitudes. Spe-
cifically, balanced flow refers to inertially stable con-
figurations, rather than two-dimensional, quasi-geo-
strophic flow. This balance applies to large-scale waves
for which the zonal group velocity is in the same di-
rection as the zonal phase speed; it does not apply to
phenomena characterized by highly dispersive, small-
scale Rossby waves. ’

With the quasi-balance system, potential vorticity
thinking can be applied to tropical dynamics. In fact,
we suggest that tropical climate dynamics might be de-
finable in terms of such a dynamical system.

To follow up on the results presented here, we intend
to investigate with historical data the degree of validity
of our approximation in the meridional momentum
equation. We suspect that a potential temperature-an-
gular momentum coordinate system for symmetric
motions might also be useful for asymmetric motions,
particularly in relation to wave-mean flow interactions
through the Eliassen—Palm fluxes. We hope to exploit
the advantages of this system in both the diagnostic
analysis of the observed circulation, and in the me-
dium-range and perhaps long-range forecast of the
large-scale flow. Examples of relevant phenomena with
long time scales include El Nifio /Southern Oscillation,
the tropical Hadley and Walker circulations, and the
standing waves associated with continental-scale forc-
ing that varies with the seasonal cycle. In the same
vein, Shutts (1989) has proposed studying climate dy-
namics with his similar balanced system.

A similar conceptual framework can also be applied
to other geometries with straightforward extensions of
the techniques described here. For example, we have
begun considering such a balance system in the context
of the cylindrical geometry of tropical storms. The pre-
dominance of low azimuthal wavenumbers in the flow
patterns and the long time scales of such storms relative
to the time scales for convection and inertia—-gravity
wave propagation are similar in principle to the as-
sumptions made herein for a spherical annulus.
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