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ABSTRACT

We explore the use of semi-Lagrangian methods in a situation where the spatial scale of the flow collapses
to zero during the time integration. The inviscid Burgers equation is used as the test model because it is the
simplest equation that allows scale collapse (shock formation ), and because it has analytic solutions. It is shown
that despite the variable manner in which the gradient of the wind field approaches infinity in the neighborhood
of the shock, the semi-Lagrangian method allows the error to be localized near the steep slope region, Comparisons
with second-order finite difference and tau methods are provided. Moreover, the semi-Lagrangian method gives
accurate results even with larger time steps (Courant number greater than 2 or 4) than are possible with the
Eulerian methods. The semi-Lagrangian method, along with other recently developed numerical methods, is
useful in simulating the development of steep gradients or near discontinuities in a numerical model. Some
applications of the semi-Lagrangian method are discussed.

1. Introduction

The need for higher resolution numerical models
motivates the development of more efficient time in-
tegration schemes. A good example is the semi-implicit
time integration used by Robert et al. (1972). With
the semi-implicit scheme it is possible to run a primitive
equation model four to six times faster than with the
other frequently used integration schemes. Using con-
cepts similar to those developed by Wiin-Nielsen
(1959) and Sawyer (1963), Robert (1981) proposed
combining the semi-implicit integration scheme with
a semi-Lagrangian treatment of the advection terms in
a barotropic model. Robert et al. (1985) extended the
scheme to a multilevel model. They found that the
time step could be increased by a further factor of 6
over that of an Eulerian semi-implicit scheme. Mean-
while, Bates and McDonald (1982) and Bates (1984)
have shown that the semi-Lagrangian treatment of ad-
vection can also be coupled with a split explicit or al-
ternating implicit treatment of the linear terms.
McDonald (1986) and Temperton and Staniforth
(1987) discussed the efficient two-time-level semi-La-
grangian methods. Staniforth and Temperton (1986)
have demonstrated that the semi-Lagrangian technique
with large time steps can produce excellent forecasts
from synoptic scale fields as verified against high res-
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olution Eulerian forecasts. Tanguay et al. (1989) pre-
sent a 48-hour forecast from a three-dimensional semi-
Lagrangian model with a time step three times larger
than for an Eulerian model. Comparable results are
obtained while more than halving the CPU time of the
Eulerian control. In addition, Pudykiewicz and Stan-
iforth (1984) analyzed the semi-Lagrangian approxi-
mation to the advection equation with idealized initial
data and they showed that the scheme has exceptional
dispersive properties. Recently, Williamson and Rasch
(1989) used shape-preserving interpolation schemes in
the semi-Lagrangian method to maintain the local
monotonicity of the moisture fields. They applied the
shape-preserving semi-Lagrangian method to the
moisture advection equation in the NCAR GCM and
in the NMC global model and obtained good results.
Cote and Staniforth (1988) doubled the efficiency of
their two-time-level semi-implicit semi-Lagrangian
global spectral model by using a smaller computational
Gaussian grid than the usual one, without incurring
the significant loss of accuracy that is observed for the
corresponding Eulerian spectral model in analogous
circumstances. In these studies the spatial scales of flows
did not change appreciably during the forecast period.
In this paper we show that the semi-Lagrangian
schemes with larger time steps perform well even when
the scale collapses to zero during the integration.
There are many important phenomena in the at-
mosphere that are associated with sharp gradients.
Hoskins and Bretherton (1972) and Williams (1967,
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FIG. 1 The analytical solution of the inviscid Burgers equation
att=0.0,1=0.51=0.75 and ¢t = 1.0 with 7 = 0.0.
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FIG. 2. The root mean square error in the numerical solutions of
the inviscid Burgers equation as a function of the number of grid
points (modes) N for the Chebyshev-tau (TAU) and the second-
order finite difference (FD2) methods at ¢ = 0.5 and ¢ = 1.0 (scale-
collapse time). The scale collapse position isat x = 0.0 and 2 = 0.
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1972) have studied frontogenesis under the combined
actions of geostrophic and ageostrophic motion. They
have shown that discontinuous fronts can form within
a reasonable period of time if no turbulent diffusion is
present. This period can be of the order of 24 hours
depending on the initial conditions. Williams and
Kurth (1976) examined the formation of discontinu-
ities from unbalanced initial conditions. They deter-
mined criteria for the formation of those discontinuities
that are analogous to hydraulic jumps in a one-layer
homogeneous fluid. Recent observations by Shapiro et
al. (1985) give evidence for the cross-front scale-col-
lapse of nonprecipitating cold-frontal zones to hori-
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FIG. 3. The difference between the exact and the numerical solution
in the computational domain at the scale-collapse time for Chebyshev-
tau method with & = 0. The upper picture is for the case where the
scale collapse occurs at a collocation point while the lower picture is
for a case where the scale collapse does not occur at a collocation
point.
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FI1G. 4. The analytical and second-order finite difference solutions at the time of scale collapse with N = 32 and various #. The dashed
curves are the analytical solutions. The methods and the i are as follows: (a) FD2, # = 0.0; (b) FD2C, @ = 0.0; (¢) FD2, # = 0.5; (d) FD2C,
i =0.5; (e) FD2, i = 1.0; (f) FD2C, # = 1.0. The time step used in the calculation is 0.0078125 (In,At = —7).

zontal scales of 1 km or less. The leading edges of these
fronts possess the characteristic structure of density
current flows: an elevated hydraulic head followed by
a turbulent wake. The relationship between frontal de-
formation, vertical circulation, and surface boundary-
layer processes in frontal scale collapse and the for-
mation of hydraulic heads remains to be studied by
observational and modeling efforts.

In addition to the development of near disconti-
nuities in frontal zones, the evolution of potential-vor-
ticity anomalies on isentropic surfaces also involves

sharp gradients. The usefulness of potential vorticity
on isentropic surfaces with dynamical balance rela-
tionships (which leads to the invertability principle)
in providing insight into atmospheric dynamics has
been well recognized (Hoskins et al. 1985). Aside from
the numerical difficulty in developing the fast elliptical
solvers for the invertability principle, the treatment of
the intersections of isentropic surfaces with the earth’s
surface can pose a challenge for numerical modelers.
Following the early work of Bretherton (1966), Hos-
kins et al. (1985) argued that at such intersections the
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FIG. 4. (Continued)

isentropic surface runs just under the earth’s surface
with a pressure equal to the surface pressure. At any
horizontal position where two distinct isentropic sur-
faces run just under the earth’s surface, there is no
mass trapped between them. Numerically, this would
lead to infinite potential vorticity or zero potential
pseudodensity (inverse of potential vorticity). In the
prognostic equation we then need to predict the evo-
lution of the entire potential pseudodensity (including
this zero potential pseudodensity region ). This implies
that we must cope with sharp gradients of potential
pseudodensity and guarantee the positive definiteness
of potential pseudodensity.

The physical processes discussed above have impli-
cations for the computational methods used in nu-
merical modeling, One requirement of a computational
method for such scale-collapse phenomena would seem
1o be an ability to accurately represent a very sharp
gradient in the computational domain. In addition,
any numerical dispersion error due to a presence of a
shock should not contaminate the smooth solution
away from the shock. The problem with post-shock
oscillations has lead to the development of many pow-
erful finite difference schemes such as artificial-viscos-
ity, self-adjusted hybrid schemes, flux-corrected trans-
port schemes, piece-parabolic-method, and front
tracking procedures. A review of these techniques can
be found in Woodward and Colella (1984). In addition
to the above methods, Smolarkiewicz (1984 ) proposed
a very cost effective positive definite advection scheme
with small implicit diffusion. Recently, Arakawa (per-
sonal communication) proposed a generalization of
Takacs’ (1985) third-order finite difference scheme that
has very small dissipation and computational disper-

sion and that guarantees positive definiteness. In this
paper, we will use the inviscid Burgers equation to il-
lustrate the usefulness of the semi-Lagrangian method
in the scale-collapse situation. The Burgers equation is
used because of the shock formation in most cases and
the existence of analytical solutions. Discussions of the
shock solutions to Burgers equation can be found in
many classical texts such as Whitham (1974). The in-
viscid Burgers equation and analytic solutions are given
in section 2. Also presented in section 2 are the com-
putational solutions from the tau spectral method and
second-order finite difference method. The semi-La-
grangian discretization and the semi-Lagrangian so-
lutions are given in section 3. Section 4 contains con-
cluding remarks.

2. Model-problem and Eulerian solutions
We consider the inviscid Burgers equation
u du
—+u—=0
ot ox

on the infinite domain with the initial condition

(1

u(x,0)= f(x)=a—tan"'"(x — x). (2)

The general solution to (1) is
u(x,t) = f(x — u(x, t)r).
The analytical solution for initial condition (2) is
u=1—tan"(x — ut —xp). (3)

To determine the time of scale-collapse differentiate
(3) with respect to x which gives
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-
a_u__ dx
dx 1+ (x—xo— ut)?’

At x = xo + ut, u = u so that we obtain

ou ou
(:9;)X=XO+I;[ - _<1 - t(g';)x=xo+ﬁt) ’ (4)

which leads to

ou 1
- =——7"=—>—00 as
ox x=xgp+ut L=

Physically, the above problem gives scale-collapse for-
mation with mean background advection at speed #.
The scale-collapse (shock formation) time is 1.0 with
the position of scale collapse at xp + . Given the spec-
ified parameters # and xp, the analytical solution to
the inviscid Burgers equation with (2) as initial con-
dition at any x and ¢ can be obtained numerically to
desired accuracy by fixed point iteration on (3). Since
t varies continuously from 0 to 1, the method of con-
tinuation will speed up convergence to the iteration if
we use the analytical solution computed from the pre-
vious time as the initial guess for the next time. Figure
1 shows the analytical solution of the inviscid Burgers
equation at = 0.0, ¢ = 0.5, ¢ = 0.75 and ¢t = 1.0 with
Xo=0and u = 0.

Once the analytical solution is established we con-
sider the problem with the same initial condition on
the finite domain [—1, +1]. The second-order centered
difference and Chebyshev-tau methods then are used
to solve the problem with the boundary conditions
provided by the analtyical solution. A detailed descrip-
tion of the Chebyshev-tau method can be found in
Gottlieb and Orszag (1977). Two types of second-order
finite difference are used here. Specifically, we consider
the second-order centered difference (FD2) scheme

du_,' . .uj+| — U

= O’
d YT 2Ax

and the energy (u?/2) conserving second-order cen-
tered difference (FD2C) scheme

du; + (Wi + 1+ W ) (Wi — U1) _

dar 6Ax 0. ()

Here u; denotes values at the grid points x;. The second-
order Runge-Kutta time integration scheme is used
here, with the time step chosen to be very small so that
the errors in the computation are dominated by spatial
discretization errors.

The corresponding root mean square error is shown
in Fig. 2 as a function of the number of grid points N
for t = 0.5 and ¢t = 1.0 (shock formation or scale-
collapse time) with # = 0. The tau method is much
better than the second-order finite difference method
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at ¢ = 0.5, but both methods yield similar results at the
time of scale collapse. The tau method converges ex-
ponentially to the analytical solution at ¢ = 0.5 and
converges algebraically to the analytical solution at ¢
= 1.0. The different convergence properties for the tau
spectral method are due to the fact that the smoothness
of the analytical solution changes as the scale collapse
occurs. The second-order finite difference method has
algebraic convergence at both times. The errors (the
difference between the exact and the numerical solu-
tion) as a function of x for the tau spectral method
with N = 32 at the scale-collapse time ¢ = 1.0 are pre-
sented in Fig. 3. The upper picture in Fig. 3 is for the
case where the scale collapse occurs at a collocation
point while the lower picture is for a case where the
scale collapse does not occur at a collocation point.
The root mean square error in the lower picture is about
three times larger than the error in the upper picture.
In both cases we observe large oscillatory errors
throughout the computational domain.
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FIG. 5. The root mean square error in FD2 and FD2C schemes
as a function # for N = 32 and At = 0.0078125 (In,At = —7) at the
time of scale collapse. The dashed curves are for the errors in the
three points (2Ax error) nearest scale-collapse position. The solid
curves exclude the errors in three-point scale-collapse region.
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The analytical and second-order finite difference so-
lutions at the time of scale collapse with N = 32 and
various # are illustrated in Fig. 4. The methods and
the # are as follows: (a) FD2, # = 0.0; (b) FD2C, &
=0.0; (¢) FD2, u = 0.5; (d) FD2C, u = 0.5; (e¢) FD2,
1= 1.0; (f) FD2C, u = 1.0. The time step used in the
calculation is 0.0078125 (In,At = —7). Note that FD2
and FD2C yield good results when # = 0. The solutions
degrade somewhat as & increases. The root mean square
errors in the FD2 and FD2C schemes as a function of
u for N = 32 and Ar = 0.0078125 (In,At = —7) are
shown in Fig. 5. The dashed curves in Fig. 5 are for
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the errors in the three points (2A x error) nearest scale-
collapse position. The solid curves exclude the errors
in three-point scale-collapse region. Figure 5 suggests
that as # increases errors tend to increase and become
less localized in the scale-collapse region. Similar results
are obtained with fourth-order finite difference calcu-
lations. Thus they are not shown here.

3. Semi-Lagrangian solutions

The simulation of the development of scale-collapse
phenomena without the dispersion errors as shown in
Fig. 3 is crucial in many areas of atmospheric modeling.

|r|2 At=-3

FIG. 6. The analytical and semi-Langrangian solutions at the time of scale-collapse with N = 32 and # = 0.0 and xo = 0.0. The dashed
curves are the analtyical solutions. The time steps are as follows: (a) 0.0078125 (In,At = —7); (b) 0.125 (In,At = —3); (c) 0.25 (In,At

= =2);(d) 0.5 (In,At = —1).
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We will now examine the evolution of the scale collapse
with the semi-Lagrangian method. Again, the boundary
conditions used in the calculations are provided by the
analytical solution. In the semi-Lagrangian formula-
-tion, Eq. (1) is written in the form of a total derivative
following the motion

d
Eu(x(t), t)=0. (7)
In a centered scheme it is approximated as
u(x(t + At), t + At) — u(x(t — At), t — At)
= (.
2At
(8)
2 [ Lo T Ly ~
U=05
IngAt=-7
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Choosing the location at the forecast time to correspond
to a grid point (i.e., x (¢ + Af) = X;), and letting «;
represent the displacement during one time step leads
to

u(x;, t + At) = u(x; — 205, t — At). 9)

The displacements «; are determined by approximate
integration of

L3

dt
over the period of [t — At, t + At]. Integration of (10)
by the midpoint rule yields

(10)

U=05
InyAt=-3

FIG. 7. Same as Fig. 6 except with # = 0.5 and x, = —0.5.
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&; = Atu(xj— Oy t), (11)
which can be solved by iteration. The combination of
(9) and (11) is the three-time-level semi-Lagrangian
scheme with second-order accuracy in time. It is similar
to the one proposed by Robert (1981). The assurance
of convergence and computational efficiency of itera-
tion will be analyzed by the fixed point iteration, of
which many iterative methods (such as Secant and
Newton’s methods) are special examples (Conte and
de Boor 1980). With # fixed point iterations, (11) can
be written as

o ") = Atu(x; — o™, 1). (12)

U=1.0
In2

At=-7
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By subtracting (11) from (12) and using the Lipschitz
continuous condition we have

u
oD — ol = At’ ™

(13)

o™ — all.

From the contraction mapping principle, (13) indicates
that iteration in (12) will converge so long as

ou

Atl <1 (14)

Equation ( 13) also indicates that accuracy is raised by
O(At) with each iteration we perform. Since the mid-
point rule used in Eq. (11) is of third-order accuracy

||||||

1
| —-
Iny At=-1

.......

FiG. 8. Same as Fig. 6 except with 7 = 1.0 and x; = —1.0.
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in time, no more than three iterations are needed to
solve Eq. (11). Condition ( 14) imposes accuracy con-
straints on the choice of time-step size used in the semi-
Lagrangian method. The time-step size used in the
semi-Lagrangian method is limited only by the varia-
tion of velocity. This differs from the Eulerian methods
where the time-step size is limited by the CFL stability
contraint. Similar analysis was presented in Pudykie-
wicz et al. (1985).

Since interpolation is used in finding function values
on each departure point, the semi-Lagrangian method
can be easily adapted with irregular grid spacing. To
compare with the second-order finite difference results
in section 2, we have used constant grid spacing (Ax)
in our calculations. The key to the semi-Lagrangian
method is the interpolation needed in (9) after the de-
parture points are known from the iterations. For the
one-dimensional uniform advection of a passive scalar
with linear or parabolic interpolations, the semi-La-
grangian methods are related to first-order upstream
or Lax Wendroff schemes (Bates and McDonald 1982).
However, the development of the semi-Lagrangian
method in the last decade (e.g., Robert 1981; Robert
et al. 1985; among others) suggests that linear or par-
abolic interpolations should not be used in finding the
function values (e.g., Eq. (9)]. A common alternative
is the third-order accurate cubic spline method. It is
global in the sense that the value of the interpolating
function at any interpolating point depends on all the
given input information. There are local third-order
accurate interpolators such as the Hyman method
(Hyman 1983) where the value of the interpolating
function at any point x depends only on the six given
values nearest x. We have tested our problem with the
cubic spline and Hyman interpolators and obtained
similar results with each. Only the results from the cu-
bic spline interpolator are shown here.

Figure 6 shows the analytical and semi-Lagrangian
solutions at the time of scale collapse with N = 32 and
# = 0.0 and x; = 0.0. The time steps are as follows:
(a) 0.0078125 (IlmpyAr = —7); (b) 0.125 (InyAtf
= —3);(c) 0.25 (InpAt = —2); (d) 0.5 (InAr = —1).
Similar semi-Lagrangian solutions for & = 0.5 and x,
= —0.5 and # = 1.0 and x, = —1.0 are presented in
Figs. 7 and 8, respectively. In these figures, the scale-
collapse region' develops while it is advected from X
to x = 0.0. The Courant number is greater than 1 in
the At = 0.125 case and is greater than two in the Ar
= .25 case. When At = 0.5, the Courant number is
greater than 4 and the shock forms from the smooth
initial condition in only two time-steps.

It is clear from Figs. 6, 7, and 8 that, except for the
At = 0.5 case, the semi-Lagrangian solutions maintain
the steep gradients while moving with a mean back-
ground advection. Even with the Az = 0.5 case, when
the shock forms from the smooth initial condition in
only two time-steps, the semi-Lagrangian solutions are
still reasonable. We do not observe large dispersion
errors such as those shown in Fig. 3 associated with

MONTHLY WEATHER REVIEW

VOLUME 118

the semi-Lagrangian solutions. As du/dx approaches
infinity at the time of scale collapse, ( 14) indicates the
parcel trajectories as determined from ( 12) fail to con-
verge. Thus, there are errors in the scale-collapse region
in addition to the error in interpolation that become
increasingly important as the length scale collapses.
Another remarkable feature of semi-Lagrangian so-
lutions is that the errors are confined near the local
region of steepest slope. The errors as a function # for
N = 32 with In,At = —2, —4 and —6 are shown in Fig.
9. The conventions of dashed and solid curves are the
same as Fig. 5. By comparing Figs. 9 and 5, we note
that error is more localized in semi-Lagrangian solu-
tions for a wide range of . Moreover, semi-Lagrangian
solutions perform well in the scale-collapse situation
even when the Courant number is greater than 2. The
errors as a function of the time-step size for N = 32
with # = 0.0, 0.3, 0.5, 0.7 and 1.0 at the time of scale
collapse are shown in Fig. 10. The conventions of
dashed and solid curves are the same as Fig. S. Figure
10 reinforces the observation from Figs. 6, 7, and 8
that the semi-Lagrangian solutions agree well with the
analytical solution except for the small oscillations
around the scale-collapse region. It is highly desirable
that the solutions away from the scale-collapse region
are not affected by the presence of the scale-collapse
region. From Figs. 9 and 10 we note that this is true
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FIG. 9. The root mean square error in semi-Lagrangian method
as a function # for N = 32 and In,Af = —2, —4, and —6 at the time
of scale collapse. The convention of dashed and solid curves are the
same as Fig. 5.
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F1G. 10. The root-mean-square error in the semi-Lagrangian so-
lutions of the inviscid Burgers equation as a function of the time-
step size (At) for N = 32 with & = 0.0, 0.3, 0.5, 0.7 and 1.0 at the
time of scale collapse. Dashed and solid curves mean the same as in
Fig. 5.

even when the Courant numbers are greater than 4.
The properties of localized errors and larger time steps
in the semi-Lagrangian method enable us to simulate
efficiently the evolution of a steep gradient or near dis-
continuity in a numerical model.

Finally, we note that the errors in Fig. 10 are “V”
shaped with respect to the time-step size. The minima
in these “V” shaped curves are associated with the time
steps of Courant number approximately equal to 1.
On the left part of the “V” shaped curves, the inter-
polation errors dominate. Thus the accuracy of semi-
Lagrangian solutions improves when larger time steps
are used (the number of interpolations are reduced).
On the right part of the “V” shaped curves where
Courant numbers are greater than 1, time truncation
errors dominate. Therefore the errors of the semi-La-
grangian solutions increase as the time-step sizes in-
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crease. Figure 11 illustrates the error as a function of
the number of grid points N for the two different time-
step sizes that have errors on both sides of the “V”
curves. It is clear that the accuracy improves as N in-
creases when the time step is sufficiently small (Courant
number is smaller than 1 and interpolation errors
dominate). No improvement of accuracy by increasing
N is found in the situation where time truncation errors
dominate. This suggests that the accuracy in semi-La-
grangian model can be further improved when time
truncation errors are reduced. This may, however, lead
to a reduction in efficiency.

4. Concluding remarks

The semi-Lagrangian method has generally been
applied to synoptic scale modeling. In those studies the
spatial scales of flows did not change appreciably during
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FIG. 11. The root-mean-square error in the semi-Lagrangian so-
lutions of the inviscid Burgers equation as a function of the number
of grid points N at scale-collapse time. The time steps are 0.125 (In,At
= —3) and 0.0078125 (In,At = —7). Dashed and solid curves mean
the same as in Fig. 5.
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the forecast period. Here we explore the use of semi-
Lagrangian methods in the situation where the scale
of the flow collapses to zero during the integration.
The inviscid Burgers equation is used because of the
shock formation in the solution and the existence of
analytical solutions. The test model analytical solutions
as shown in Fig. 1 resemble the classical case of front-
ogenesis by deformation fields (Hoskins and Bretherton
1972). Thus we believe the present semi-Lagrangian
calculations are representative and related to the at-
mospheric modeling. Despite the manner in which the
gradient of the wind approaches infinity in a portion
of domain the semi-Lagrangian schemes perform well
with larger time steps (Courant number greater than
2 or 4) than the Eulerian methods. We have shown
that the semi-Lagrangian method gives solutions with
much less dispersion error at the time of scale collapse.
Specifically, most of the errors are localized in the 2Ax
region nearest the shock. The semi-Lagrangian solu-
tions away from the shock are not affected by the pres-
ence of the shock. The results indicate the usefulness
of the semi-Lagrangian method in handling the ad-
vection of near discontinuities and the development
of scale-collapse regions in atmospheric numerical
models.
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