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ABSTRACT: Microphysical perturbation experiments were conducted to investigate the sensitivity of convective heavy
rain simulation to cloud microphysical parameterization and its feasibility for ensemble forecasts. An ensemble of 20 pertur-
bation members differing in either the microphysics package or process treatments within a single scheme was applied to
simulate 10 summer-afternoon heavy-rain convection cases. The simulations revealed substantial disagreements in the loca-
tion and amplitude of peak rainfall among the microphysics-package and single-scheme members, with an overall spread of
57%–161%, 66%–161%, and 65%–149% of the observed average rainfall, maximum rainfall, and maximum intensity, respec-
tively. The single-scheme members revealed that the simulation of heavy convective precipitation is quite sensitive to factors
including ice-particle fall speed parameterization, aerosol type, ice particle shape, and size distribution representation. The
microphysical ensemble can derive reasonable probability of occurrence for a location-specific heavy-rain forecast. Spatial-
forecast performance indices up to 0.6 were attained by applying an optimal fuzzy radius of about 8 km for the warning-area
coverage. The forecasts tend to be more successful for more organized convection. Spectral mapping methods were further
applied to provide ensemble forecasts for the 10 heavy rainfall cases. For most cases, realistic spatial patterns were derived
with spatial correlation up to 0.8. The quantitative performance in average rainfall, maximum rainfall, and maximum intensity
from the ensembles reached correlations of 0.83, 0.84, and 0.51, respectively, with the observed values.

SIGNIFICANCE STATEMENT: Heavy rainfall from summer convections is stochastic in terms of intensity and
location; therefore, an accurate deterministic forecast is often challenging. We designed perturbation experiments
to explore weather forecasting models’ sensitivity to cloud microphysical parameterizations and the feasibility of
application to ensemble forecast. Promising results were obtained from simulations of 10 real cases. The cloud mi-
crophysical ensemble approach may provide reasonable forecasts of heavy rainfall probability and convincing rain-
fall spatial distribution, particularly for more organized convection.

KEYWORDS: Cloud microphysics; Ensembles; Cloud parameterizations; Mesoscale models

1. Introduction

Heavy convective precipitation may cause disasters such as
flooding and landslides; therefore, it is an essential subject for
weather forecasting and disaster management. The develop-
ment of summer convective rainfall depends not only on envi-
ronmental forcing but also on in-cloud microphysical processes
(Andreae et al. 2004; Rosenfeld et al. 2008; Tao et al. 2012),
which, in turn, influence cloud dynamics through latent heating/
cooling, precipitation drag, cold pool formation, and cloud radi-
ation. Together, these factors determine rainfall’s intensity, tim-
ing, and location, factors critical to the issue of disaster warning.
However, the forecast of heavy convective rain has always been
challenging because of the relatively small temporal and spatial
scales of convection systems, which cannot be resolved well by
observations (Weckwerth 2000) or numerical simulations (Lynn
et al. 2001).

Earlier studies on heavy convective precipitation forecast
have relied on radiosonde-derived thermodynamic indices in

the form of a checklist for diagnosing the prospect of heavy
rainfall (e.g., Showalter 1953; Jefferson 1963; Miller 1972;
Andersson et al. 1989; Gordon and Albert 2000). However,
studies have suggested that such indices’ reliability depends on
geographical location, and no single index performed well in
all regions (Haklander and Delden 2003; Marinaki et al. 2006;
Sanchez et al. 2001). With the advent of numerical weather
prediction (NWP), heavy rainfall forecasting has shown some
promise. Nonetheless, the NWP models are often inadequate
in heavy rainfall’s intensity and location (Junker and Hoke
1990; Nam et al. 2014; Shahrban et al. 2016; Sikder and
Hossain 2016; Majumdar et al. 2021); they are also limited
in providing a proper diagnosis of heavy convective rainfall in
regions without sufficient observations (Birch et al. 2014;
Sahlaoui et al. 2020).

One of the key factors for an accurate precipitation forecast
by an NWP model is the initial conditions, which inevitably
contain various uncertainties. The error associated with such
uncertainties can grow upscale and significantly affect forecast
accuracy (Lorenz 1969; Rotunno and Snyder 2008; Johnson
et al. 2014). A way to deal with such uncertainties is to performCorresponding author: Jen-Ping Chen, jpchen@ntu.edu.tw
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an ensemble forecast using perturbed initial and boundary con-
ditions (Ehrendorfer 1997; Hohenegger et al. 2008; Kühnlein
et al. 2014; Keresturi et al. 2019). Other than the initial and
boundary conditions, NWP models also contain uncertainties
in the physics parameterization schemes. Some NWP centers
have applied a multimodel approach to address uncertainties
in both the physics and dynamics, such as the THORPEX
Interactive Grand Global Ensemble (Bougeault et al. 2010),
the North American Ensemble Forecast System (Candille et al.
2010), and the NCEP Short-Range Ensemble Forecast system
(Du et al. 2003). Multiphysics in a single model is another ap-
proach that focuses on the uncertainties in individual physics
schemes (Du et al. 2003; Garcı́a-Dı́ez et al. 2015; Jankov et al.
2017). Such approaches have the advantage of potential bias

cancelation that leads to an improved ensemble forecast and
produces a good ensemble spread (Duan et al. 2012). The en-
semble technique may be particularly beneficial for convective-
scale NWP because of the convective systems’ fast evolution
and chaotic nature. The short predictability time scales caused
a new scale of uncertainty that did not exist in the lower resolu-
tion models (WMO 2012).

However, it is costly for a single NWP center to maintain
and develop multiple models or physics schemes. It is also un-
affordable to sample the full range of uncertainty in convec-
tive precipitation with huge ensembles. Identifying the largest
uncertainties in the model may help reduce the number of en-
semble members and optimize ensemble forecasts. Figure 1
demonstrates the diversity in heavy rain simulation when

FIG. 1. Accumulated rainfall during 0000–1200 UTC 14 Jun 2015 over northern Taiwan from a summer convective system simulated with
the WRF Model. The model setup is the same as described in section 2a. The rows show simulations using three different initial/boundary
conditions from (a)–(c) the Global Forecast System of the Central Weather Bureau (CWB), (d)–(f) the Final Operational Global Analysis
of the National Centers for Environmental Prediction (NCEP), and (g)–(i) the ERA-Interim reanalysis data from the European Centre for
Medium-Range Weather Forecasts (EC). The columns show results using three different microphysics schemes: (left) GCE, (center)
WDM6, and (right) MORR (details of these WRF options given in section 2b). Domain average and maximum accumulation are listed
above each panel, and the spatial correlation with the QPESUMS data is listed in the top-left corner of each panel.
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applying different initial and boundary conditions (IBC) or
cloud microphysical parameterizations (CMP) for a case to
be discussed further in section 3. One can see that perturba-
tion in both IBC and CMP introduced significant discrepancies
among simulations. However, the CMP perturbations disagree
more among themselves compared to the IBC perturbations.
The mean of normalized standard deviation (standard devia-
tion divided by the average) in average rainfall and maximum
rainfall among the CMP perturbations are 66% and 12%, re-
spectively, higher than those among the IBC perturbations.
Also, the spatial correlations against the observational data
are less similar among the CMP than the IBC perturbations.
Although we used only a minimum number of perturbations
for this example, the results suggest that uncertainties in CMP
are no less significant than those in IBC for convective rainfall
simulations. Toth and Kalnay (1997) indicated that successful
ensemble forecasts require all significant error sources to be
considered in the ensemble design. Therefore, considering CMP
uncertainties could be critical to ensemble forecast, at least for
predicting heavy rainfall from summer convection.

Purely physical perturbation ensembles are rare in opera-
tional forecasts. However, the influence of cloud microphysical
parameterizations has been investigated widely (cf. Morrison
et al. 2020). For example, Fovell et al. (2009) found a significant
impact of cloud microphysics schemes on the track of an ideal-
ized hurricane. Qiao et al. (2018) demonstrated the effect of
perturbed temperature tendency for microphysical processes
and hydrometeor size distribution in an idealized supercell sim-
ulation. In a real-case ensemble forecast experiment, Wang et al.
(2020) found that stochastically perturbing the hydrometeor ter-
minal velocities according to their error characteristics can bet-
ter match the observation than symmetrical perturbations for
convective precipitation forecast. With observational guidance,
Stanford et al. (2019) stochastically varied the coefficients of
the ice particle mass-size and fall speed–size relationships; they

found significant effects on cloud radiation and precipitation.
Gaudet et al. (2021) conducted a comprehensive investigation
by applying different microphysics schemes and perturbing in-
dividual processes for a snowstorm precipitation forecast. They
found that even though the position of the snowfall is relatively
consistent among the CMP members, the intensity of snowfall
varied significantly. All these studies demonstrated the sen-
sitivity of modeled cloud and precipitation to microphysical
parameterization.

This study aims to identify critical microphysical uncertain-
ties and investigate the potential of the microphysical ensem-
ble for heavy-rain probability forecast. The Taipei metropolis
is selected as the focal area because of its high population den-
sity (nearly 7 million in a basin of about 90-km2 size) and rela-
tively frequent flood-causing convective rainfall during the
summer (Akaeda et al. 1995; Chen et al. 2007; Chen et al. 2009;
Lin et al. 2011). Furthermore, the Taipei metropolis is located
in a basin surrounded by hills and mountains with two river val-
leys funneling streams and airflow (cf. Fig. 2). The complicated
interactions between the land–sea-breeze effect, heat island ef-
fect, and complex orography make the heavy-rain objective fore-
cast particularly challenging for this area (Lin et al. 2012).
Therefore, we performed multimember simulations on 10 sum-
mertime heavy-rain events to discuss the uncertainties in micro-
physical parameterization, and the potential of using CMP
perturbations for ensemble forecasting of convective rainfall.
We also evaluated the performance of the CMP ensemble for
heavy-rain intensity and location forecasts.

The remainder of the paper is organized as follows. Section 2
describes the heavy-rainfall cases selected for simulation and
the model setup, including the selection of perturbation mem-
bers. Section 3 discusses the perturbation experiment results,
with details from a demonstration case and the statistics from
all 10 cases. How the perturbation experiment can be applied
to ensemble forecasts, including the heavy-rain probability

FIG. 2. Settings of the model domains. (left) Layout of first (d1), second (d2), and third (d3) domains, with horizon-
tal grid spacings of 20, 4, and 1.33 km, respectively. (right) A zoom-up of domain 3, with rain gauge locations indicated
by red dots. The white-rectangular box in domain 3 is the focal area for later analysis, with the “1” sign indicating the
Taipei City center. The color scale represents the terrain height (m).
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distribution and intensity forecast, is presented in section 4.
The final section gives a summary and conclusions.

2. Methodology

a. Case selection and model setup

The heavy-rainfall threshold adopted here for case selection
is hourly intensity. 40 mm h21 or 3-h accumulation. 100 mm
based on measurements from around 110 automatic rain gauges
(cf. Fig. 2b). We ignored events with possible influence from
nearby (within 300 km) weather systems (such as typhoons or
cold fronts) and weak events with less than three sites reaching
the heavy-rain threshold. A total of 10 summer-afternoon heavy
precipitation cases (see Table 1) occurred during 2013–16 over
the Taipei Metropolis and its surroundings fit the criteria and
thus were selected. The 14 June 2015 event is designated as
the demonstration case (hereafter named case 150614), with a
more detailed microphysical analysis given in section 3.
Note that, in the studied area, heavy rainfall often occurred
over the mountainside, where rain gauge stations are scarce.
Therefore, a different rainfall dataset from the “quantitative pre-
cipitation estimation and segregation using multiple sensors”
(QPESUMS; Chang et al. 2021) provided by the Central
Weather Bureau is used for obtaining regional rainfall sta-
tistics in later analyses because of its better spatial coverage.
This QPESUMS system assimilates observations from mul-
tiple mixed-band weather radars and rain gauges, as well as
NWP model results, to produce 1-km resolution intensity every
10 min.

The numerical model selected for this study is the Weather
Research and Forecasting (WRF) Model version 3.8.1
(Skamarock et al. 2008), which provides a suite of cloud mi-
crophysical schemes that are suitable for our purpose. The
simulations applied three two-way-nesting domains (cf. Fig. 2)
with horizontal grid spacings of 20, 4, and 1.33 km, respectively,
and each contains 210 3 180, 251 3 251 and 241 3 241 grids.
Our discussions focus on results in the central region of the in-
ner domain, which covered the whole northern Taiwan with the
Taipei Metropolis located to the north (cf. Fig. 2). In the vertical
dimension, 45 sigma layers were used. The ERA-Interim rean-
alysis data from the European Centre for Medium-Range
Weather Forecasts (EC-ERA) were used for the initial and

boundary conditions. For each case, the simulations started at
2000 local time (1200 UTC) on the previous day for sufficient
model spinup. The analyses start from 0800 local time to mid-
night. For the studied afternoon thunderstorm cases, convective
clouds and precipitation generally developed in the late morn-
ing. Therefore, the effective spinup time is more than 12 h, in
accordance with the recommendation by Jankov et al. (2007).
Also, the rainfall accumulated in the analyzed period is equiva-
lent to a daily accumulation. The physics options applied in-
clude the Kain–Fritsch cumulus scheme (Kain 2004; used only
for the first domain), YSU planetary boundary layer scheme
(Hong et al. 2006), Goddard Space Flight Center radiation
scheme (Matsui et al. 2018), Noah Land Surface Model (Tewari
et al. 2004), and revised MM5 surface layer scheme (Jimenez
et al. 2012). Several cloud microphysics schemes are selected to
form the ensemble members, with details described as follows.

b. Microphysics schemes and perturbation members

A total of nine different microphysical schemes (members
1–9; hereafter called the MS members) in the WRF model were
chosen as CMP members (cf. Table 2). In addition, we also per-
turbed physical processes and size-distribution representations
that have been shown to significantly influence the performance
of cloud microphysical parameterization (Morrison et al. 2020).
These perturbations (members 10–24; hereafter called the NTU
members) are variations from the NTU scheme (Tsai and Chen
2020), which was chosen because of its comprehensiveness in
treating microphysical processes and its use of up to three pre-
dicted moments to resolve the size distributions. Because the fo-
cus of this study is the perturbation and ensemble techniques,
we avoid judging individual members’ performance in later dis-
cussions. Note that the simulation for case 160616 using the
MY2 scheme was not successful for unknown numerical prob-
lems and thus was excluded from later analyses.

The mathematical representations addressed here focus on
the hydrometeors’ size distribution, which is conventionally
described with a gamma-type function as follows:

n(D) � N0D
aexp(2kD), (1)

whereD is the diameter; andN0, a, and k are the size-distribution
parameters called the intercept, spectral dispersion, and slope,

TABLE 1. List of selected summer heavy rainfall cases around the Taipei Metropolis and their rainfall characteristics. The “
#
” and

“
@
” signs respectively indicate rain gauge and QPESUM data provided by the Central Weather Bureau.

Date
No. of stations
with heavy rain#

Max intensity#

(mm h21)
Max 3-h

accumulation# (mm)
Max intensity@

(mm h21)
Max 24-h

accumulation@ (mm)
Avg rainfall@

(mm)

23 Jun 2013 8 69.5 119.5 69.3 119.8 8.9
6 Jul 2013 8 97.5 130.5 100.5 138.8 6.2
25 Jul 2013 4 55.5 100.0 57.5 113.0 3.8
23 Jun 2014 12 91.0 179.0 91.3 254.0 17.7
29 Jun 2014 5 59.5 78.0 55.5 113.0 14.0
14 Jun 2015 6 105.0 187.5 80.3 205.0 7.2
23 Jul 2015 5 64.0 80.5 111.8 152.0 9.0
18 Aug 2015 7 70.5 124.0 107.5 199.8 13.9
17 Jun 2016 8 79.0 140.0 148.3 341.0 18.3
29 Jun 2016 6 71.5 104.0 94.5 208.5 17.6
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respectively. Studies have shown that how we select and de-
scribe the spectral parameters in Eq. (1) has a strong influence
on model results (Milbrandt and Yau 2005a,b; Morrison et al.
2009; Tsai and Chen 2020; Milbrandt et al. 2021). The cloud
model usually tracks the moments (or their derivative varia-
bles) of the size distribution, which is expressed as the
following:

Mj �
�
Djn(D) dD, (2)

where j is the order of moment. Among the perturbation
members shown in Table 1, members 1–3 and 7 (LIN, WSM6,
GCE, and NSSL-1M) are single moment (1M) schemes, which
keep track of the mixing ratio of each hydrometeor category
(correspond to the third moment, M3, when divided by the
specified particle density). For such schemes, only one of the
three size-distribution parameters in Eq. (1) can be derived,
and k usually is selected to vary with M3 while N0 and a are
kept constant (the latter traditionally set to zero). Members 4–6
and 8 (i.e., WDM6, MORR, MY2, and NSSL-2M) are either
partially (for selected hydrometeor categories) or fully double

moment (2M) schemes that track an additional parameter}the
number mixing ratio (equivalent to M0). However, a still needs
to be either specified as a constant or diagnosed from other pa-
rameters. The NTU triple moment (3M) scheme (members 9–16
and 21–24) further tracks the second moment (M2; proportional
to the surface area) so that a becomes a predictive variable.
We also utilize the 2M version of the NTU scheme, which
applied diagnosed or fixed a (members 17–20).

Besides the size distribution functions, uncertainties also ex-
ist in the description of physical processes. This study takes the
NTU scheme (member 9) as the default setting and perturbs
individual processes in subsequent members. Members 10–11
tested the aerosol effect on cloud drop formation by switching
the types (size distributions) of condensation nuclei from the
default “continental background” to either “maritime” (clean)
or “urban” (polluted) types (cf. Whitby 1978). Ice nuclei (IN)
concentration used in the default setting is 400 L21 accord-
ing to Georgii and Kleinjung (1967) and Chen and Lamb
(1994), which is also approximately a medium value in the
global simulation of Hoose et al. (2010) for nondesert areas.
Members 12–13 alter the default ice nuclei concentration

TABLE 2. List of microphysical perturbation members. In the setup descriptions, 1M, 2M, and 3M (or when not specified) denote
one-moment, two-moment, and three-moment schemes, respectively. In the code names for the NTU scheme, a represent the “shape
factor” in the gamma-type size distribution in Eq. (1); the suffix “S” indicates spherical shape; “V” indicates empirical fall speed
(power-law dependence on size; independent of shape and density); “C” or “P” represent clean or polluted aerosol types,
respectively; “L” or “H” indicate lower (1/100 times) or higher (100 times) ice nuclei (IN) concentrations; “T” indicates “traditional”
parameterization setups (i.e., empirical fall speed, spherical ice-phase hydrometeors); “Ri” indicates the ith simulation with
randomized collision efficiency for ice–liquid and ice–ice interactions; and “Ii” indicates the ith simulation with randomized initial
conditions. The WRF options refer to those in versions 3.8.1 if not specified.

Member
No.

Microphysics
scheme Member code Descriptions Reference(s)

1 Lin LIN 1M; option 2 in WRF Chen and Sun (2002)
2 GCE GCE 1M; option 7 in WRF Tao et al. (1989, 2016)
3 WSM6 WSM6 1M; option 6 in WRF Hong and Lim (2006)
4 WDM6 WDM6 Semi-2M, option 16 in WRF Lim and Hong (2010)
5 MORR MORR Semi-2M, option 10 in WRF Morrison et al. (2009)
6 MY2 MY2 2M, option 9 in WRF Milbrandt and Yau (2005b)
7 NSSL NSSL-1M 1M; option 19 in WRF
8 NSSL-2M 2M, option 18 in WRF Mansell et al. (2010)
9 NTU NTU Default (3M; continental background aerosol);

option 56 in WRF version 4.3 or later
Tsai and Chen (2020)

10 NTU-C Maritime (clean) aerosol
11 NTU-P Urban (polluted) aerosol
12 NTU-L Low IN concentration
13 NTU-H High IN concentration
14 NTU-VR Power-law fall speed for raindrops
15 NTU-VI Power-law fall speed for ice-phase hydrometeors
16 NTU-S Spherical ice crystal
17 NTU-2ad 2M, diagnosed a for ice-phase hydrometeors
18 NTU-2af 2M, fixed a (=3 for pristine ice and =0 for other

ice-phase hydrometeors)
19 NTU-2S 2M, a = 0 and spherical shape for all ice-phase

hydrometeors
20 NTU-2T Same as NTU-2S, but with power-law fall speed

for all hydrometeors (“T” stands for traditional)
21–24 NTU-R0–NTU-R3 Default 1 randomized collision efficiency
25–28 NTU-I0–NTU-I3 Default 1 randomized initial conditions
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by 0.01 or 100 times. Members 14–15 applied simplified
(power-law type, similar to that in the Morrison scheme)
fall speed parameterization for raindrops and ice-phase
hydrometeors, respectively. By contrast, the default NTU
scheme applied raindrop group fall speed parameterized
from bin-model results (Chen and Liu 2004) and ice-
particle fall speed from Mitchell and Heymsfield (2005),
which considered the particle shape and density effects (cf.
Tsai and Chen 2020). Member 16 assumes all ice particles are
spherical (as done in most traditional schemes) in contrast to
the variable-shape approach in the default setup (cf. Tsai and
Chen 2020), in which the shape factor affects the vapor deposi-
tion, collision, and sedimentation processes of pristine ice crys-
tals and snow aggregates. Among the four NTU 2M schemes,
member 17 applied a pseudo3M method for ice-phase hydro-
meteors, in which a is diagnosed (similar to Milbrandt and
Yau 2005a,b) using empirical formulas derived from NTU-3M
simulations; member 18 applied a = 3 for the pristine ice crys-
tals (cf. Chen and Tsai 2016) and a = 0 for other ice-phase hy-
drometeors; member 19 mixes two simplifications: 2M with
a = 0 (the conventional approach) and spherical ice particles;
whereas member 20 further applied the power-law type fall
speeds for all hydrometeors.

The above members’ selection takes into consideration crit-
ical microphysical factors identified in earlier studies, such as
fall speed (e.g., Tsai and Chen 2020; Milbrandt et al. 2021),
condensation nuclei and ice nuclei (e.g., Teller and Levin
2006; Kuba and Fujiyoshi 2006; Fan et al. 2017; Keita et al.
2020), ice crystal shape (e.g., Harrington et al. 2013; Chen and
Tsai 2016; Tsai and Chen 2020), and size distribution repre-
sentations (e.g., Milbrandt and Yau 2005a,b; Morrison et al.
2009; Tsai and Chen 2020). Another consideration is uncer-
tainty in the collection efficiency for hydrodynamic interac-
tions between hydrometeors. The parameterization of liquid-
phase particle interactions in the NTU scheme follows the
statistical–physical method of Chen and Liu (2004), which im-
plicitly included the realistic variations of collection efficiency
documented in the literature. However, the collection effi-
ciencies for the ice–ice or ice–liquid collision processes are
highly simplified. Because of a lack of more advanced param-
eterizations, the NTU scheme assumed that the collection
efficiency is either a constant or a simple function of interact-
ing particle masses, as done in most current schemes. To
touch upon its uncertainty, we adopted a random perturba-
tion approach by multiplying the collection efficiency with
a random number between 0.5 and 2.0 at each grid and
every time steps; this treatment is repeated four times
(members 21–24) with different number sequences. Four ad-
ditional tests (members 25–28) were applied using random
perturbations to the initial low-level potential temperature
field to contrast microphysical perturbations and initial-
condition perturbations. Following Stanford et al. (2019),
the perturbations were applied using a random-number gen-
erator to create a Gaussian distribution with a standard de-
viation of 60.1 K. Due to their simplicity and relatively low
impact, we only mentioned members 21–28 in the main-case
discussion and exclude them in the ensemble probability
analysis.

3. Microphysical perturbations

a. Rainfall intensity and spatial patterns for case 150614

We first demonstrate the large discrepancies in simulated
heavy rainfall among different members using case 14 June 2015
(150614). This case is a severe afternoon thunderstorm sys-
tem that developed under a weak southwesterly monsoon
background. It produced the highest maximum intensity
(105 mm h21) and 3-h accumulation (187.5 mm) among the
10 selected events according to the rain gauge data (but not
QPESUMS). Even though the interaction between dynamic
and thermodynamic mechanisms for this event is interesting
(Miao and Yang 2020), this study will focus on only its micro-
physical aspects.

Figure 3 shows a comparison of the spatial distribution of
the 24-h accumulation. Most members roughly caught the
overall spatial pattern exhibited by either the rain gauge or
QPESUMS data. However, many also produced heavier rain
from the southern convection cell instead of the northern cell
shown in the observation. The spatial correlation coefficients
compared to the QPESUMS data range from 0.39 (NTU-V)
to 0.65 (NTU-VR), indicating significant variation in spatial
patterns. Figure 3 also indicates that the spatial-pattern varia-
tion is relatively large among the NTU members. A contrast-
ing result was obtained by Gaudet et al. (2021), who applied a
similar suit of microphysical perturbation members to simu-
late an Ontario lake-effect snowstorm. They found greater
consistency in spatial patterns among the NTU members than
MS members.

Interestingly, rainfall from the group with the randomized
collection efficiency (members 21–24; figures not shown) pro-
duced spatial patterns quite similar to that of NTU (member 9)
but fluctuated noticeably in the maximum intensity and accu-
mulation (see Fig. 4). As the randomization was executed every
time step, the average collection efficiency from members 9 and
21–24 should be quite similar after a few hours of simulation.
Nonetheless, the maximum intensity or accumulation still dif-
fered appreciably among these members, indicating that the col-
lection process is nonlinear and the subsequent microphysical
chain reactions may be chaotic. However, likely due to other
controlling factors (such as forcing from orography and back-
ground flow), such a perturbation does not significantly influ-
ence rainfall’s spatial pattern for case 150614. The variations
due to the initial-condition perturbations (members 25–28) are
even smaller than the randomized collection efficiency, support-
ing the results in Fig. 1. A word of caution, though; the spread
from initial-condition perturbations may vary with the micro-
physical scheme (Wang et al. 2012; Chen et al. 2021), an issue
not explored in this study.

The simulated maximum accumulation also varied greatly,
from the least of 52 mm (NTU-V) to the highest of 313 mm
(NSSL-1M). Nevertheless, these values well enclose that from
the surface rain gauges (189 mm) or QPESUMS (205 mm).
Note that the maximum accumulation and intensity may de-
pend on the grid resolution. Nevertheless, the inconsistency
should be small because the model resolution (1.33 km) is
close to the QPESUMS resolution (1 km). Eight members
(WSM6, GCE, MORR, MY2, NTU-H, NTU-2ad, NTU-R0,
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and NTU-R3) produced peak accumulation within 10% of the
rain gauge or QPESUM data. The spread of the rainfall simu-
lation is summarized in Fig. 4. Taking the QPESUMS rainfall
data as a reference, the models generally produced insuffi-
cient average 24-h rainfall (RFave) and maximum 24-h accu-
mulation (RFmax) but stronger maximum intensity (RImax).
Significant discrepancies exist not only among different micro-
physics schemes (members 1–9) but also among different pro-
cess treatments within the NTU scheme (members 9–24), and
the latter is by no means less significant. The spread of RFave,
RFmax, and RImax among different MS members (members 1–9)
is 65%, 87%, and 98%, respectively, of the observed values.
Such variations are somewhat less prominent than those (69%,
99%, and 132%, respectively) among the members using differ-
ent process treatments in the NTU scheme (members 9–24).
The overall spreads (members 1–24) are 114%, 127%, and
150%, respectively. These spreads are somewhat more sig-
nificant than those (91% and 108% at two observation sites)

for the lake-effect heavy snowfall ensemble by Gaudet et al.
(2021).

The treatment of randomized collection efficiency and ini-
tial conditions caused relatively minor deviations from the de-
fault NTU scheme: approximately within 14% in RFave, 39%
in RFmax, and 67% in RImax for randomized collection effi-
ciency, and 9% in RFave, 15% in RFmax, and 33% in RImax.
Because the randomizations in collection efficiency and initial
conditions do not significantly add to the model spread, mem-
bers 21–28 were excluded from the ensemble analysis in the
following sections.

b. Rainfall spread statistics for 10 cases

The microphysical sensitivities illustrated above do vary
substantially from case to case. Among the 10 cases, the range
of spreads (in % of the observed values) in RFave, RFmax, and
RImax are 55%–161%, 59%–145%, and 42%–115% among
the MS members; 17%–72%, 21%–99%, and 43%–126% for

FIG. 3. The simulated and observed daily cumulative rainfall for case 150614. The top four rows are simulations with the perturba-
tion members 1–20 that are listed in Table 2. Panels in the last row from left to right, respectively, are the results from the simple en-
semble mean (ESB_Mean), the “sort-all” spectral mapping (ESB_SA), the “sort-within-member” spectral mapping (ESB_SM), the
cubic spline interpolation of rain gauge observations, and the 1-km resolution QPESUMS data. The color scale indicates rainfall
amount (mm).
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NTU members, and 57%–161%, 66%–161%, and 65%–149%
for all members. One may observe that case 150614 (Fig. 4)
may not be very typical comparing to the statistics of all
10 events shown in Fig. 5. The spreads among the NTU mem-
bers are mostly smaller than those among the MS members.
In fact, more than half of the cases showed substantially larger
standard deviations in rainfall indices among MS members
than the NTU members. Such a result is understandable be-
cause the MS members differed in a suite of parameteriza-
tions, whereas the NTU members picked only a few processes/
parameters for perturbation. Nevertheless, the degree of diver-
sity among NTU members remains substantial when looking
at the 10 cases as a whole.

Although some members may tend (say, more than 75% in-
cidences) to produce higher or lower rainfall than observa-
tions, few members produced consistent biases (always positive
or negative) for the 10 cases. Only two schemes (WDM6 and
NTU) contained the observed values in the interquartile range
of the box-and-whisker plot, which indicates their relatively
small biases in the three rainfall indices (i.e., RFave, RFmax, and
RImax). Large biases can also be found in some NTU-scheme
variations, including NTU-C, NTU-V, NTU-2af, and NTU-2T.
These indicate that the possible causes of bias in the heavy-rain
simulation are the model’s treatment in aerosol type, fall speed
parameterization, and the spectral shape of the size distribu-
tion. Note that NTU-2af is somewhat more sophisticated than
NTU-2ad, yet it seems to perform somewhat worse in all three
rainfall indices. This result may suggest a possible cancellation
of biases from different microphysical processes. On the other
hand, NTU-V changed only the ice-particle fall speed, but
the effect seems much more dramatic than NTU-2T, which

additionally altered the size distribution. This suggests that the
traditional power-law fall speed may have been adapted for
use with the traditional Marshall–Palmer distribution.

c. Hydrometeors vertical distribution

Everything else being equal, the members’ disagreement
on surface rainfall should result from the different treatment
in microphysical processes, which can be reflected in the
quantity of hydrometeors. In a microphysical perturbation ex-
periment on lake-effect snowfall, Gaudet et al. (2021) showed
that the surface precipitation type (e.g., snow, graupel, or
rain) varied more strongly than the total precipitation quan-
tity among the perturbation members. So, in the following, we
briefly examine the discrepancy in hydrometeors among dif-
ferent perturbation members. Note that the NTU scheme
applied a “pristine cloud ice” category that differs from the
traditional “cloud ice” category. Such pristine cloud ice can
grow by vapor deposition without a size limit and thus may be
large enough to be called “snow” in conventional definition.
The traditional category of snow, in turn, is redefined as snow
aggregates. It helps to compare only the sum of cloud ice
(pristine cloud ice) and snow (aggregates) between NTU and
other schemes. Also, some microphysical schemes do not dis-
tinguish between graupel and hail; therefore, one may combine
hail and graupel when comparing their quantity in different
schemes.

Figure 6 shows the vertical profile of each hydrometeor’s
mass concentration averaged over the inner domain and the
whole simulation time. The basic patterns look similar, with
cloud ice, snow, graupel/hail, cloud drop, and raindrop se-
quentially emerging at different heights. However, substantial

FIG. 4. Rainfall discrepancy (in %) relative to the QPESUMS data from 28 microphysical perturbation members and the ensemble
methods for case 150614. (left) Average rainfall, (center) maximum accumulation, and (right) maximum intensity. The reference (observa-
tion) values are listed in Table 1.
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diversity exists in the relative amount and the altitude where
the maximum proportion occurs for each hydrometeor. The
differences are most significant in ice-phase hydrometeors.
Some members produced a prominent upper-level peak in to-
tal mass (e.g., WSM6, GCE, MORR, NSSL-2M, NTU-V, and
NTU-2T), but the occurred heights ranged from 6 to 13 km.
A few members produced more graupel than cloud ice and
snow combined. The highest proportion of condensate to exist
as graupel ranges from approximately 20% (NSSL-2M) to
87% (LIN). The spread in graupel’s mass fraction is smaller
among the NTU members except NTU-V and NTU-2T, with
the lowest of roughly 58% (NTU-R3) to the highest of 81%
(NTU-C). Substantial differences also exist among the NTU-
scheme members. In particular, the member NTU-V showed
much cloud ice near the cloud top but only a meager fraction
of snow and graupel at all heights, which may explain its low-
est rainfall amount and intensity (cf. Figs. 3 and 5). NTU-2T
(in effect NTU-V plus 2M size distribution) also produced an
ample amount of cloud ice aloft, indicating the ice-particle
fall-speed treatment can significantly affect the growth and
conversion of cloud ice to snow and graupel; however, the ef-
fect is less significant when the 2M size distribution is also ap-
plied. Furthermore, NTU-V produced significantly less cloud
water and rainwater. A possible reason is that the weak pro-
duction of precipitation (mainly graupel and snow) resulted in
weaker dynamic feedbacks through the cold-pool mechanism,
which was suggested to be a critical factor for convection
development in this heavy-rain event (Miao and Yang
2020). Other microphysical processes can also contribute to

intermember discrepancies, but the details will not be elab-
orated further here.

4. Heavy-rain ensemble forecast

a. Location-specific heavy-rain probability

An important aspect of heavy rain forecasting is the prob-
ability of occurrence and issuing a warning for specific loca-
tions. The spatial patterns shown in Fig. 3 provide a good
example of diversity in heavy-rain spatial patterns, which
may be utilized for a location-specific probability forecast.
Following Ebert (2001), counting the fraction of members
that produced heavy rain at specific locations (grids) can
yield a heavy-rain probability map, as shown in Fig. 7 for the
10 studied cases under the .40 mm h21 criterion. The ensem-
ble results produced areas of significant probability (roughly
.20%) at locations near the spot of actual occurrence, with
heavy-rain center mostly within about 10 km distance. One ex-
ception is case 130623, where the high probability area is more
than 20 km away from the actual heavy-rain zone. For the
more organized convective systems (e.g., cases 140623, 150614,
150723, 150818, and 160617), the highest heavy-rain proba-
bility may reach well over 70%. The better performance for
the more organized heavy-rain systems is possibly due to
their distinct thermodynamic and orographic forcing. When
the areas of occurrence are scattered (or less organized), the
forecasted areas also tend to be patchy with greater location
mismatch (e.g., cases 130623, 130706, 130725, 140629, and
160629).

FIG. 5. As in Fig. 4, but for the 10 cases and expressed with box-and-whisker plot diagrams. The rectangular box, the vertical line within
the box, and the red dot indicate the interquartile range (25%–75%), median, and mean, respectively, while the whisker ends indicate the
extreme values.
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The above results suggest that the microphysical ensem-
ble technique may have a decent capability in pinpointing
the location of heavy rain, which is essential for disaster
preparation. So, we evaluated the location correctness of
heavy-rain binary (yes/no) forecasts from ensemble mem-
bers by adopting two performance indices commonly ap-
plied in meteorological forecasts: the threat score (TS) and
accuracy (ACY). Other performance indices may also be
used but are ignored to condense the discussion. The TS
index (also called the critical success index) is the ratio of

hits to all forecasted or observed “events,” defined as the
following:

TS ≡ a
a 1 b 1 c

, (3)

where a is the number of members forecasted the incidents
(hits), b is the number of members forecasted but not oc-
curred in reality (false alarms), and c is the number occurred
but not forecasted (misses). Terms in the denominator indicate
that TS emphasizes the occurred events, whereas the ACY

FIG. 6. Vertical profile of different hydrometeors from each microphysical perturbation member for case 150614. The abscissa shows
the mass concentration (1025 kg m23) of each hydrometeor species averaged over the focus area (cf. Fig. 2); the ordinate shows the alti-
tudes regridded into 1-km height intervals from original model levels. The color scheme indicates the hydrometeor species with QC, QR,
QI, QS, QG, and QH representing cloud drop, raindrop, cloud ice, snow, graupel, and hail, respectively.
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index also considers the correctness of forecasting the none-
vents according to the following definition:

ACY ≡ a 1 d
a 1 b 1 c 1 d

, (4)

where d is the number of observed nonevents that are fore-
casted correctly (correct rejects). Conventionally, these two
fractional indices are used to evaluate the skill in forecasting a
certain kind of event over a long period. Here, we applied
them to assess the daily forecast skill at particular locations in a
single rainfall incidence using statistics from different members,
not various rainfall cases as in traditional usage. Therefore,
false alarms cannot apply to occurred incidents (i.e., heavy
rain), whereas misses cannot apply to nonevents (i.e., not heavy
rain). Similarly, false alarms and misses are mutually exclusive.
Thus, the contingency table collapses to a binary mask such
that the conventional equitable threat score is not applicable.

A factor that needs to be considered in forecasting the
heavy-rain locations is the dependence on the size of the
warning area. Because it is difficult for the forecasts to pin-
point and match observations, particularly for increasingly
higher model resolutions, a spatial window is often applied
to provide verification at multiple scales. However, a wider
warning area will increase the probability of detection [also
called prefigurance � a/(a1 c)] but, at the same time, also
increase the false alarm rate [� b/(a1 b)]. To test the spatial
prediction ability of the ensemble model, we applied the
fuzzy radius concept to explore the sensitivity of model per-
formance to the size of the warning area (cf. Ebert 2008).
Under this concept, a success (hit) is awarded when the
forecasted event (or nonevent) is within a distance R (i.e.,
the fuzzy radius) of the observed event. We intend to find
an optimal R that returns helpful indices for evaluating the
model performance in heavy-rain spatial forecasts.

Using case 150614 as an example, Fig. 8 illustrates the per-
formance indices’ variation with R. Both the TS and ACY

indices varied significantly with increasing R in terms of spatial
pattern and score values when R is below 8 km. After R reached
8 km, the spatial pattern converged with the observed heavy-
rain area (cf. Fig. 7), but the scores at the “hit” areas kept on in-
creasing until R reached about 14 km. For a pinpoint warning
(R = 0), the TS barely reached 0.25 over a limited area. In con-
trast, the ACY index is similar over the observed heavy-rain
area but approaches 1.0 over much of the nonevent areas. For
an overprecautious warning (e.g., R . 14 km), TS and ACY
may reach about 0.8 over the event areas, which is the fraction
of members that did produce heavy rain in the inner domain,
but accompanied with zero scores over a broad surrounding
area.

The overall results from the 10 cases suggest that, for more
(less) organized convective systems, the effective warning ra-
dius from our microphysical ensemble is about 6 (10) km, and
the average is about 8 km. Figure 9 shows the spatial per-
formance indices under R = 8 km for the 10 selected cases.
Apparently, the ensemble results for the more organized
convection cases tend to achieve higher TS scores with sev-
eral locations even acquiring TS . 0.6. In contrast, the five
less organized convection events had relatively low TS (,0.2)
due to either low hits in the heavy-rain area or false alarms in
nonevent areas, whereas the size of the low ACY area is also
smaller due to the limited heavy-rain occurrence.

b. Heavy-rain quantitative forecast

In principle, the results from different members can provide
an ensemble mean that generally verifies better than an un-
perturbed (control) forecast because it smooths out the un-
predictable forecast elements (WMO 2012). However, for
precipitation forecast, a simple ensemble by taking area aver-
ages of different members tends to underestimate the heavy
rain and overestimate the weak rainfall primarily because of a
mismatch in convection’s locations. For example, in the rela-
tively better-simulated case 150614, a simple ensemble average

FIG. 7. Probability (in %) of hourly intensity exceeding 40 mm h21 for the 10 selected cases. The color shading indicates the probability
from microphysical perturbation members, and the black and purple lines indicate the areas that observed heavy rain (.40 mm h21)
according to the QPESUMS and rain gauge data, respectively.
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would yield a peak accumulation of 113 mm (ESB_Mean in
Fig. 3), which is about 67% (81%) less than the observed peak
from rain gauges (QPESUMS).

A way to resolve this drawback is to apply the spectral re-
mapping method (cf. Ebert 2001), similar to those used for
synthesizing audio signal (Grey and Moorer 1977) or image
downscaling (Gastal and Oliveira 2017). The rationale is that
the peak values from each member may be more trustworthy
than the locations. The spectral remapping method utilizes the
ensemble spatial pattern to position the peak-rainfall areas while
preserving the peak values from each member, and it operates
in two steps. First, for an ensemble of m (=20 in this study)
members, each with n grids (241 3 241 in this study) in the sim-
ulation domain, the m 3 n grids are first sorted according to

their rainfall amounts (either the intensity or the accumula-
tion) and rearranged into n subsets (ranks). Then, the m val-
ues in the first rank are synthesized to yield a representative
value for that rank, which is remapped to the grid of highest
rainfall determined from the simple ensemble mean. The same
procedure is operated sequentially on the remaining n2 1 sets
of values.

There are various ways of synthesizing the values of the
same rank to provide a representative value of that rank. In a
study of precipitation ensemble forecast, Ebert (2001) sug-
gested using the median value based on the bimodal nature of
the rainfall distribution, which is either zero (the usual case)
or distributed in lognormal form when rain occurs. However,
in heavy rain situations, the rainfall values in a particular rank

FIG. 8. Effect of warning area extent (fuzzy radius) on the performance indices for heavy rain (.40 mm h21) spatial forecast for case
150614. (top) TS and (bottom) ACY. The green shaded area in the top panels indicates that no members forecasted heavy rain and thus
cannot be evaluated with TS. For panels of R = 0, the warning location is the center of each model grid. Results for R. 14 km do not dif-
fer significantly from those with R = 14 km and thus are omitted. Color shading indicates the performance indices from 0 to 1.
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tend to be similar due to sorting and thus are not bimodal.
Another technique Ebert (2001) suggested is to apply the
“majority rules” so that rain is forecasted only where more
than half of the ensemble members predicted rain, and the rain
rate is averaged from only those members. Yet, this method af-
fects only the median to lower rank sets and has minimal effect
on heavy rain forecast.

Therefore, a straightforward averaging of all m values of
the same rank seems reasonable for our purpose, using two
slightly different approaches. First, we sort the precipitation
strength within each member, then average those with the
same rank across the members (hereafter called SM, stands
for “sort within member”). Second, we sort all grids from all
members, and then take the average of each successivem num-
ber of values (can be from the same member) to yield the en-
semble ranking (hereafter called SA, stands for “sort all”). For
case 150614, the SM approach generated a maximum accumu-
lation of 177 mm (cf. ESB_SM in Fig. 3), which improved sig-
nificantly over the simple ensemble mean even though it is still
a bit short of the observed value. In contrast, the SA approach
produced a peak value of 242 mm (cf. ESB_SA in Fig. 3),
which went a bit too far. Because the top-ranked values in the
SA approach can be from the same member, peak heavy rain
tends to bias toward a few strong members. On the other hand,
the SM approach suffers from always including the weak

members. Therefore, the maximum value from ESB_SA is usu-
ally significantly higher than that from the SM approach.

Figure 10 shows rainfall’s spatial pattern derived from the
spectral-mapping ensembles. The spatial correlations between
ESM_SA (ESM_SM) and observation range from 0.26 (0.28)
for case 130706 to 0.79 (0.80) for case 140623. Apparently, more
organized events attained better matches. According to Fig. 11,
the variation in spatial correlation is much more substantial
among different events than among different members. The
median (mean) of the spatial correlation among the 10 cases
is around 0.64 (0.60) from the ensemble results, significantly
higher than all individual members (median: 0.54–0.61, mean
0.53–0.58) (Fig. 11a). Furthermore, the ensemble results outper-
formed most (and often all) individual members for all events
except case 130706 (Fig. 11b), which is the least organized and
most difficult to simulate. Interestingly, the spectral mapping
approach somewhat degraded the spatial correlation as can
be seen from the consistently higher spatial correlation in
ESB_Mean than ESM_SM and ESB_SA (Fig. 11b).

Besides the spatial pattern (location), the ensemble forecast
may help determine the peak amount and intensity of heavy
rainfall, also crucial information for disaster warnings. The
SM and SA approach each has its strength in peak rainfall
predictions. Comparing the three ensembles (ESB_Mean,
ESB_SA, and ESB_SM) and individual members altogether,

FIG. 9. As in Fig. 8, but for the 10 selected cases and with fuzzy radius R = 8 km.
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the SA approach ranked first and third in RFmax and RImax,
respectively, in the correlation with QPESUMS data for the
10 cases (Fig. 12). However, the SA approach also produced
relatively high root-mean-square errors (RMSE), ranking
22 and 13 in RFmax and RImax, respectively. In contrast, the
SM approach ranked 11th and 4th in the RMSE performance
of RFmax and RImax, respectively, whereas the correlation
rankings are 5th and 20th, respectively. Note that the three
ensembles should produce the same RMSE and correlation
coefficient in average rainfall. Similar performance standings
among the three ensembles can also be observed in Fig. 5.
Such results suggest that the microphysical perturbation en-
semble does not necessarily outperform most of the individual
members in terms of peak rainfall. Nevertheless, the SA ap-
proach does show some promise in forecasting heavy rainfall
from summer convection, considering that its high bias can be
adjusted through regression analysis.

5. Conclusions

This study conducted microphysical perturbation experi-
ments (MPE) to investigate the sensitivity of model results to
cloud microphysical parameterization and the feasibility of

using a microphysical perturbation ensemble to forecast heavy
rainfall due to summer-afternoon convection. We applied nine
cloud microphysical parameterization schemes in the WRF
model and eleven variations in process treatments within the
multimoment (two for liquid- and three for ice-phase hydro-
meteors) NTU scheme to simulate 10 summer-afternoon
heavy rain convections that occurred around the Taipei me-
tropolis. Four additional simulations were conducted in a dem-
onstration case to touch on the uncertainty in the collision
efficiency by applying stochastic perturbations. We also ran a
theta-perturbation ensemble, but the spread was small relative
to that from perturbed microphysics.

Our simulations revealed large disagreements in the loca-
tion and amplitude of peak rainfall among the MPEmembers.
The range of spread in average rainfall, maximum rainfall, and
maximum intensity relative to the observed heavy rain reached
57%–161%, 66%–161%, and 65%–149%, respectively, for the
10 simulated cases. Such discrepancies exist not only among
different microphysical schemes but also among different pro-
cess treatments within a single scheme (i.e., the NTU scheme).
These process perturbation experiments show that convective
heavy-rain formation is most sensitive to the following micro-
physical factors: fall speed parameterization, aerosol type, ice

FIG. 10. Ensemble forecast of the accumulation using the spectral remapping methods for the 10 simulated events. The results from
(left) ESB_SA, (center) ESB_SM, and (right) QPESUMS data. The date of each case is indicated at the top-left corner of each panel; the
spatial correlation (with QPESUMS), average rainfall, and maximum rainfall from the ensembles are listed above the panels.
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particle shape, and the spectral shape of the size distribution, at
least within the context of the NTU scheme for these cases.

The large spread of results among the MPE members may
provide a way to improve heavy-rain ensemble forecasting.
Using the 10 cases, we demonstrated that the microphysical
ensemble might produce a reasonable probability of occur-
rence for issuing a heavy-rain warning for specific locations.
Such a probability forecast tends to be more successful for
more organized convection, possibly because of their distinct
thermodynamic or topographical forcing. Although a pinpoint
precision for the location of heavy-rain warning might be diffi-
cult, we found that a fuzzy radius of about 8 km for the warn-
ing coverage can yield the best performance indices. With this
fuzzy radius, the ensemble forecast may even obtain a threat

score for heavy-rainfall locations exceeding 0.6 for the more
organized convection.

Besides the probability forecast for heavy rain locations,
the MPE can also provide quantitative ensemble forecasts
about heavy rainfall. As the simple ensemble mean tends to
smear out the peak rainfall due to mismatch in locations, two
spectral mapping methods were applied to map the peak val-
ues from individual members onto the spatial distribution
resulting from the ensemble. We found that the spectral map-
ping ensembles can reasonably capture the rainfall pattern
and amount, particularly for the more organized events. The
spatial pattern from the ensembles correlated significantly
better with the observations than those from individual mem-
bers. For the 10 simulated cases, the “sort-all” mapping method

FIG. 12. Overall (10 case) performance in simulating average rainfall (gray squares), maximum accumulation (light-
blue circles), and maximum intensity (red triangles) by the microphysical perturbation members and ensemble mem-
bers evaluated against the QPESUMS data. (left) Relative root-mean-square error (RMSE) and (right) correlation
coefficient. The relative RMSE is defined as the RMSE of rainfall indices normalized by the observed values.

FIG. 11. Statistics of spatial correlation (against the QPESUMS data) from individual members for (left) all events
and (right) from individual event for all members.
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produced rainfall amount well correlated with the observed
rainfall, with correlation coefficients reaching 0.83, 0.84,
and 0.51 for the average rainfall, maximum accumulation,
and maximum intensity, respectively. Even though this method
also produced substantial overestimations, the biases can be
amended by a statistical adjustment such as linear regression.
The other spectral mapping method (“sort within members”)
caused smaller errors but also lower correlations. Nevertheless,
more cases should be tested to gain sufficiently robust statistics
before implementing such methods in operational applications.

The MPE conducted in this study may also be used for
identifying the most sensitive perturbation members that
should be considered for operational ensemble forecasts. For
example, the selected microphysical parameters (the NTU
members) are sufficient to create a spread close to that of MS
members, which indicates that uncertainties in other unper-
turbed parameters are probably not as crucial. Such infor-
mation can be used to reduce the size of MS perturbation
members for future study. Furthermore, the essence of the
ensemble approach is to apply perturbations to parameters
that contain uncertainties but not correctable errors. With
more case studies, one may also remove members (e.g., the
member NTU-V) that frequently produce outliers and are
identified as faulty or less physically realistic. After all, no
perturbation is needed if the uncertainty is eliminated; there-
fore, improvements in microphysical parameterization from
either physical or mathematical aspects are essential. On the
other hand, the traditional hydrometeor-category-based micro-
physics schemes have inherent problems; therefore, microphys-
ical schemes with novel approaches, such as those discussed in
Morrison et al. (2020), might be considered new perturbation
members.

Although a large spread in heavy rainfall simulation can re-
sult from the MPE, it remains to be clarified how such model
spread compared with those from other perturbation meth-
ods, such as perturbations in initial and boundary conditions
and different physics packages (cf. Du et al. 2018). This clarifi-
cation is essential to selecting ensemble members for minimiz-
ing computational costs. Although this study focused on cloud
microphysics, other uncertainties such as initial/boundary con-
ditions or the inclusion of other physics schemes may influ-
ence our conclusion. Also, different model setups such as grid
resolutions may further complicate the issue and are thus wor-
thy of further investigation.
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