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Abstract: Typhoon Lekima occurred in early August 2019 and moved northwestward toward Tai-
wan. During offshore passage, the typhoon underwent rapid intensification, with a northward
deflected track, moving closer to northeastern Taiwan. A global model, MPAS, at a multi-resolution
of 60-15-3 km, is utilized with ensemble forecasts to investigate the dynamic processes causing the
track deflection and intensity change as well as identify the track uncertainty to initial perturbed
conditions under the topographic effects of the Central Mountain Range (CMR). For spinning up the
typhoon vortex in ensemble forecasts, dynamic vortex initialization has been enforced with a 3 km
resolution targeted at the Taiwan area. As one specific member track is similar to the best track, the
track deflection is significantly reduced in the absence of the Taiwan terrain, highlighting the role of
the topographic effects of the CMR. For these tracks with similar deflection, the northward deflection
is caused by the induced strong flow to the east of the typhoon center in response to the re-circulating
flow around southern Taiwan, which produces the wavenumber-one gyre in the asymmetric flow
difference to drive the vortex northward. The typhoon translation around the Taiwan terrain is
dominated by the changing wavenumber-one horizontal potential vorticity (PV) advection during
the track deflection in the ensemble forecasts. The formation of an intense PV tongue along the upper
eyewall is a facilitation precondition of RI, while RI can be significantly enhanced in the presence of
an intense lower-stratospheric PV core near the upper eye, which is produced by the radial inflow of
the developed transverse vortex circulation over the upper-level outflow layer.

Keywords: Typhoon Lekima; MPAS; Taiwan terrain; track deflection; potential vorticity

1. Introduction

Among isolated mesoscale mountains, the Central Mountain Range (CMR) in Taiwan
has exerted a great impact on impinging typhoons from different approaching directions.
Topographic effects of the CMR on tropical cyclones, as summarized by a review article by
Wu and Kuo [1], have significantly affected cyclone tracks, in addition to the enhanced local
rainfall over Taiwan. The induced rainfall amounts associated with the tropical cyclones
and intense typhoons impinging on Taiwan are closely modulated by both tracks and the
moving speeds of the typhoons ([2]). The tracks basically dictate the geometric distributions
of the major rainfall, while the duration of the cyclone at various translational speeds highly
correlates with rainfall production. Understanding the variability of the typhoon tracks
near or around the Taiwan terrain appears to be vital to the forecast impacts but remains
quite limited due to a great variety of translational cyclones.

In the past, a number of numerical studies have investigated the track variations asso-
ciated with approaching cyclones/typhoons in response to the topographic effects of the
CMR or similar idealized terrain (e.g., [3–26]). A cyclonic curvature path of the westbound
cyclone that passed the northern portion of a CMR-like terrain has been identified, which
leads to a northward turning before landfalling at or passing around northern Taiwan
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([3,5]). The approaching westbound cyclones may be still deflected slightly northward
upstream, but can be significantly southward near landfall at the central-northern portion
of the CMR or idealized CMR-like terrain (e.g., [7,14,15,17,18,20]). It has been well under-
stood that such a southward turning of a westbound cyclone is attributed to the channeling
effects of northerly flow ahead of the mountain base as well as the mid-tropospheric flow
acceleration over the terrain ([15,18]).

It is crucial to identify the track responses of tropical cyclones moving toward a
mesoscale mountain in terms of a dynamic view. For westbound cyclones past a mesoscale
mountain range, the upstream track deflection has been related to the dominant factor
R/Ly regarded as a nondimensional vortex size with R (the radius of maximum tangential
wind of the upstream vortex) and Ly (the mountain length scale in the direction normal to
the vortex movement). For a small value of R/Ly, an intense westbound cyclone will tend
to be deflected southward when moving to the central or southern portion of the idealized
terrain ([18,20]). When R/Ly becomes smaller, stronger terrain blocking will be induced
ahead of the steep slope and thus leads to a rapid southward turning in response to the
intensified northerly wind west of the vortex center. However, the upstream track of such
westbound or northwest bound cyclones may get deflected northward ahead of the terrain
as close to the southern portion of the terrain (e.g., [17]).

The track behaviors of observed west-northwestward or northwestward typhoons
moving toward Taiwan have exhibited some northward deflection, moving offshore closer
to northern Taiwan, and were exhibited in Maria (2018) and Lekima (2019), respectively
([24,25]). We have identified twelve typhoons in the past 70 years moving westward to
northwestward offshore near northern Taiwan with northward track deflection—Grace
(1958), Cora (1966), Betty (1972), Nelson (1985), Fred (1994), Rananim (2004), Masta (2005),
Wipha (2007), Trami (2013), Maria (2018), Lekima (2019) and Hagupit (2020). These deflected
tracks possibly possess similar deflection mechanisms as illustrated in [25,26], where the
recirculation flow of the typhoon vortex around the southern island plays a vital role.
The nondimensional control parameter of R/Ly has to be revised by using the projected
mountain length (LE, the effective terrain scale perpendicular to basic flow) to replace
Ly to explain the favorable northward turning ([25]). The northward track deflection for
both typhoons is in response to the enhanced wind east of the typhoon center when the
recirculating flow over the southern end of Taiwan converges with the inner vortex east
of Taiwan. The induced stronger asymmetric southerly wind east of the inner vortex will
drive the typhoon vortex northward. Thus, the increase in the nondimensional vortex size
reduces the effect of mountain blocking to prevent the track from a southward turn near
the terrain base.

The northward track deflection of both west-northwestward Maria and northwestward
Lekima has been reasonably captured by the 7 km resolution of the CWB global model
FV3GFS ([24,25]). It is particularly interesting to find that both typhoon tracks indeed are
somewhat sensitive to the resolved typhoon structure for which the forecasts are affected
by physics parameterizations used by the model. However, the northward track can be
induced when the simulated upstream tracks are close to the steering direction in spite of
some deviations in typhoon intensity. Several important questions immediately arise: Will
the typhoon track and intensification be sensitive to perturbed initial conditions? How are
both related to dynamic processes in the typhoon vortex? Can the topographic effects of
the CMR cause the northward track deflection to be identified in the general forecasts with
those perturbed initial conditions? These questions stimulate the motivation of this study
but focus on the northwestward Lekima that exhibits a larger northward track deflection
than the west-northwestward Maria due to a reduced size of LE for the former. Moreover,
the former exhibits stronger intensification and intensity near the track deflection than
the latter.

In this study, we will apply a multi-resolution global model, the Model for Prediction
Across Scales-Atmosphere (MPAS-A, hereafter MPAS) to simulate Lekima for understand-
ing the predictability of the track deflection and the dynamic processes involved in the
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typhoon movement and intensification. As shown in Figure 1, the use of an enhanced
resolution zone of 3 km in the MPAS, targeted in the vicinity of Taiwan, would help re-
solve the high mountain terrain and the incoming typhoon, as shown in simulations of
Typhoon Nesat (2017) landfalling at northern Taiwan ([21]) and Tropical Cyclone Atsani
(2020) passing around southern Taiwan ([26]). For spinning up the initial typhoon vortex,
dynamic vortex initialization (DVI) ([23]) has been applied in the numerical experiment.
Ensemble forecasts to expose the impacts of initial uncertainty are produced by adding
small random perturbations to the initial conditions with the spin-up vortex. We have
analyzed the angular momentum budget and potential vorticity budget to explain the
typhoon intensification and track deflection. The DVI and diagnostics of the PV budget
have been incorporated into the multi-resolution MPAS developed for typhoon forecasts in
the vicinity of the CMR. The above developed framework facilitates use of the MPAS in
this study to complement the previous work with CWB FV3GFS.
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Figure 1. The approximate mesh resolution of MPAS-60-15-3 km indicated by the contours at an
interval of 3 km.

We briefly describe the MPAS model and its default physics schemes in Section 2,
together with the introduction of the numerical experiments and Typhoon Lekima. The
simulation results of the numerical experiments are presented and discussed in Section 3.
The budget analyses from the simulation results are provided in Section 4 to aid an interpre-
tation of the track responses and intensification of Lekima. Finally, conclusions are given in
Section 5.

2. The Model and Experiments
2.1. The MPAS

The global model used in this study is the MPAS-Atmosphere Version 6.1 mainly de-
veloped at NCAR (Boulder, CO, USA) ([27]). The MPAS adopts an unstructured centroidal
Voronoi mesh so that variable horizontal resolution that gradually increases toward some
specific region of interest can be applied to enhance the resolvable details of the flow as well
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as the topography. The use of a 60-15-3 km variable-resolution mesh for the MPAS has been
successfully applied to simulate northwest-bound typhoons passing Taiwan ([21–23]). The
highest 3 km resolution region in that study, as shown in Figure 1, is centered over Taiwan
and covers the paths of impinging typhoons from different directions. For convenience in
application, MPAS defaults have collected two suites of physics schemes, the mesoscale-
reference suite and the convection-permitting suite (the M-suite and C-suite, respectively),
both combining different physical parameterization schemes. Based on the simulation
results for sixteen typhoons in 2015–2020, the M-suite has somewhat outperformed the
C-suite in track prediction ([23]).

For all the experiments in this study, the model initial conditions take the first guess
from the National Center for Environmental Prediction (NCEP) Global Data Assimilation
System (GDAS) Final (FNL) operational global analysis (0.25◦ × 0.25◦). The MPAS has
set a default of a total of 41 vertical levels with a model top at 30 km height. The sea
surface temperature (SST) obtained from the GDAS dataset is kept unchanged during the
MPAS forecasts.

2.2. Vortex Initialization

It is often required to reinitialize the model’s initial state obtained from the global
dataset such as GDAS for improving the intensity and structure of the initial typhoon vortex
which is usually relatively weaker than that from the best track data. We have developed a
DVI scheme that conducts continuously cycled integration of 1 h for cycle runs with the
forecast model to match the intensity of the model typhoon vortex with the best track data,
either on the minimum sea-level pressure (MSLP) or maximum wind speed of the vortex
near the surface (hereafter Vmax), called P-match or V-match, respectively ([23]). After each
cycle, only the 1 h forecasted vortex within a radius of 600 km from the vortex center at the
arrival position is reallocated to the best track position, that is the departure position of the
vortex at the initial time, and then replaces the departing vortex. It is more complicated to
relocate the arrival vortex and replace the departing vortex over the unstructured grids of
the MPAS than the uniform grids of WRF ([26]). The methodology of the DVI may refer to
Huang et al. [23]. Application of the DVI has been shown to greatly improve both intensity
and track forecasts of typhoons over the Western North Pacific (WNP) (e.g., [23,26]).

2.3. Lekima and Numerical Experiments

Lekima formed east of the northern Philippines over the WNP and was categorized
as a tropical storm at 0000 UTC on 4 August 2019 by the Japan Meteorological Agency
(JMA). During the northwestward movement toward northern Taiwan, Lekima quickly
intensified as a moderate typhoon on 7 August, and became an intense typhoon at 0830
UTC on 8 August and reached the peak intensity of 910 hPa (central sea-level pressure)
and 53 m s−1 (maximum wind speed) at 1200 UTC on 8 August from the report of Central
Weather Bureau in Taiwan. Rapid intensification (RI) develops from 1800 UTC on 6 August
to 0600 UTC on 8 August as the typhoon’s maximum wind speed exceeds 30 knots/24 h or
42 hPa/24 h defined by Kaplan and DeMaria (2003) ([28]). The RI occurrence of Lekima has
been attributed to the storm passage over the warm SST larger than 30 ◦C under relatively
lower vertical wind shear in this region ([29,30]). During the intensity evolution, Lekima
underwent an eyewall replacement cycle with the formation of the concentric eyewall as
found in other intense typhoons ([31]). The mechanism of RI associated with the double-
warm core structure of Lekima in the tropospheric vortex was investigated using a regional
model by Shi and Chen (2021) ([30]).

In this study, MPAS experiments with the 60-15-3 km resolution are conducted for
Lekima. The forecasts are focused on the initial time of 1200 UTC on 6 August prior to
the track deflection. The model takes the NCEP global FNL data (0.25◦ by 0.25◦) as the
first guesses for the initial conditions. The initial vortex of Lekima from the global analysis
is somewhat relatively weaker than the observed. We thus apply the DVI to spin up the
vortex following ([23]). In the DVI, the mesoscale-reference physics schemes are used
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with the V-match where the cycled integration will be stopped when the simulated Vmax
matches or has exceeded the best track value. For spreading the initial environmental
conditions, the DVI results from this experiment (denoted as the CTL experiment) are
randomly perturbed by RANDOMCV of WRF DA (see https://www2.mmm.ucar.edu/
wrf/users/docs/user_guide_v4 (accessed on 25 January 2019) to generate twenty ensemble
members (denoted as M1–M20). These perturbations are essentially small at a Gaussian
distribution of the ensemble and are added to all prognostic model variables based on
the background errors for the summer time All the experiment forecasts are conducted
with the MPAS 60-15-3 km mesh for integration of a total of 120 h. The model forecasts
have used physics schemes including the cumulus parameterization of Grell–Freitas, the
cloud microphysics of Thompson, the surface model of Noah, the planetary boundary
parameterization of YSU, the surface-layer similarity of Monin-Obukhov as well as the
longwave and shortwave radiation of RRTMG. For references of these physics schemes,
please refer to Huang et al. ([23]). For comparisons, some experiments have reset the
Taiwan terrain heights to zero to explore the impacts of the topographic effect of the CMR
on typhoon evolution.

3. Simulation Results
3.1. Track and Intensity Simulations with Taiwan Terrain

Figure 2 shows the simulated tracks and intensities of the ensemble members (M1–M20)
and CTL. Most of the tracks tend to exhibit a larger spreading after the observed northward
deflection and deviate to the north at later stages (Figure 2a). While some of the tracks
may follow the best track, most of the tracks actually are displayed more southward. The
CTL shows that the northward deflection is consistent with the observation, despite that it
deviates northward to the north of Taiwan at later stages. Such track behaviors of CTL are
quite similar to those using the global FV3 model with a 7 km resolution ([25]).

With the V-match in DVI, all the experiments exactly capture the initial Vmax but
with slightly deeper MSLP compared to the best track values. Consequently, most of the
simulated typhoon intensities follow the best track intensities quite well in the first 30 h
but are somewhat underpredicted for the peak values in 48–54 h of the forecasts. Larger
deviations with overpredicted intensity are evident at later stages and can be attributed to
their associated larger track errors, most of which prevent the simulated typhoon from an
observed landfall in China. Except for one outlier, all the experiments produce a pressure
drop from 972 to 940 hPa in the earlier 24 h. On the other hand, most Vmax values increase
from the initial intensity of 30 m s−1 to over 40 m s−1, but are still below 45 m s−1, within
the same time. Thus, the DVI helps approximate the observed RI. By applying a similar
DVI for Lekima’s simulations with the 2 km resolution, a RI pattern is also captured ([30]).
We will be more concerned with the simulation results by 60 h with reasonable track and
intensity forecasts.

3.2. Typhoon Simulations with and without the Taiwan Terrain

Among M1–M20, several experiments show pronounced track deflection at earlier
stages and are selected for comparison. For these experiments and the CTL experiment, we
have conducted their terrain-sensitivity experiments where the Taiwan terrain heights are
reset to zero. Figure 3 shows the simulated tracks and intensities for the selected M3, M6,
and M9 as well as CTL with and without the terrain. For the four experiments, removal
of the terrain height has resulted in largely reduced track deflection, especially for CTL.
Indeed, the a northward track deflection may not be induced as seen in some of M1-20 when
a track is present too closer to Taiwan (see Figure 2a). The track becomes even southward
when the simulated vortex is more southward and moves toward northern Taiwan. This is
consistent with the finding ([24]) that the track deflection is more pronounced only when
the upstream track is close to the observed track. CTL with and without the Taiwan terrain
produces slightly stronger earlier intensification in both Vmax and MSLP on the first day,

https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4
https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4
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comparable to the best track intensity. However, neither of the four experiments can well
capture the intensification on the second day and the observed peak intensity at 48 h.
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3.3. Forecast Sensitivity to Physical Parameterizations

We have also conducted physics-sensitivity tests for the four experiments that produce
northward track deflection. Their simulation results are shown in Figure 4. As the cumu-
lus parameterization scheme is changed from Grell–Freitas to the new Tiedtke, all four
experiments can produce stronger MSLP throughout the forecasts. On the other hand, the
typhoon intensity is somewhat weakened when the cloud microphysics scheme is changed
from Thompson to WSM6. For CTL, the use of the new Tiedtke has produced a stronger RI
than the observed before the track deflection, but with a more westward-deviated track.
Northward track deflection appears to be induced for all the sensitivity tests, in spite of
large differences in their vortex intensities. This is speculated as the impacts of similar
clustering tracks of the four experiments (see Figure 2).
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Note that the strongest typhoon intensification in the first 40 h presented for the
sensitivity test of CTL has exceeded the observed RI of Lekima, where the central sea-level
pressure has deepened from 972 to 920 hPa in 30 h in Figure 4b and the Vmax has intensified
from 30 to 58 m s−1 during the same period (not shown). RI may be regarded as severe RI
far exceeding the typical RI threshold of 30 knots/24 h.

3.4. Typhoon Circulation

Figure 5 shows the simulated typhoon circulation at 850 hPa at 1800 UTC on 8 August
(54 h of forecast) for CTL M6 and M9; M3 is similar to M9 and thus is not shown. This is
about the time that the simulated Lekima takes the largest track deflection associated with
significant asymmetric development. For CTL, Taiwan’s terrain has blocked the typhoon
circulation to the east of Taiwan and southwest of the vortex center. The flow southeast
of the vortex center is stronger in the presence of Taiwan terrain, which facilitates a more
northward track. Such enhanced asymmetric wind also occurs in M6 and M9. Indeed, all
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the four experiments show the same wind enhancement in the SE quadrant of the vortex
that originates from the recirculating flow of the typhoon passing around the southern end
of Taiwan as found in Huang et al. (2022) ([25]). These results indicate a general role of
Taiwan’s terrain in modulating the asymmetric typhoon circulation to change steering.
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3.5. Evolution of the Vortex Wind Speed

To further identify the impacts of the vortex wind enhancement, we examine the
evolution of the low-level wind speed for the four experiments as shown in Figure 6. The
simulated wind speed inside the radius of 150 km from the vortex center and in the vertical
of 0–2 km height is averaged. In the vertical axis indicating the forecast time, stronger
vortex wind commences to northeast-southeast (45–135 degrees) earlier from the incipient
time, but becomes significantly enhanced after 0000 UTC on 8 August for M3, M6, and
M9, and even in advance near 1200 UTC on 7 August for CTL associated with the largest
track deflection. The larger wind speed to the northeast of the vortex is corresponding
to the northwestward steering of Lekima. Indeed, significant wind enhancement occurs
closer to the east (90 degrees) after 1800 UTC on 7 August (30 h of forecast) for CTL, and is
somewhat delayed for the other three experiments. The temporal variations of the stronger
vortex core for the four experiments are related to the magnitude and occurrence time of
their track deflection, but all show the topographic effects of the Taiwan terrain on the
asymmetric wind development of the vortex.
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3.6. The Asymmetric Flow Affecting Tracks

The track deflection of the simulated Lekima is closely related to the development
of enhanced asymmetric wind for the four experiments (CTL, M3, M6, and M9). Figure 7
shows the wind differences (averaged in about 850–700 hPa) between the wavenumber-
one flow of the experiments with and without the Taiwan terrain at the times when the
track deflection begins at 0600 UTC 8, 1800 UTC 8, 1800 UTC 8, and 1200 UTC 8 and
completes at 1800 UTC 8, 0600 UTC 9, 0000 UTC 9, and 0000 UTC 9 for CTL, M3, M6, and
M9, respectively. Near the track deflection, there are pronounced northerly and southerly
wind differences east and southwest of the inner vortex, respectively. It is constituted by a
pair of large gyres providing the westerly-northerly flow crossing the vortex core, which
facilitates the vortex to move accordingly. Despite the detailed differences between the four
experiments, these gyres tend to rotate counterclockwise so that more easterly flow can
penetrate into the vortex core when the track becomes more westward after the deflection.
The results are similar to the idealized simulation of Tang and Chan ([17]) and the same
case simulation of Huang et al. ([25]). In this study, the four experiments are not unique to
the presence of the northward track defection of Lekima.
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4. Discussion

As shown in the previous section, the CTL experiment has illustrated the features of ty-
phoon circulation with reasonable intensity and the most pronounced track deflection. We
will provide some investigations for CTL regarding the dynamic processes in typhoon evo-
lution based on diagnostics of angular momentum (AM) budget and potential vorticity (PV)
budget. The flow is decomposed to obtain the mean (symmetric) and eddy (asymmetric)
parts for calculating both AM budget and PV budget. Formulations of the azimuthal-mean
AM budget and the wavenumber-one PV budget are given by Huang et al. (2020) ([24])
and Nguyen and Huang (2021) ([32]), respectively. For both budgets, the turbulent diffu-
sion is neglected as the flow above the inflow boundary layer is more concerned with the
steering of the typhoon.

4.1. Azimuthal-Mean Angular Momentum Budget

Figure 8 shows the height-radius cross-sectional azimuthal mean of angular momen-
tum budget (m2 s−2) for CTL at 0600 UTC on 8 August (42 h of forecast). Both radial
advection and vertical advection of mean AM produce comparable major negative and
positive contributions (Figure 8a,b) that appear to counteract each other. Larger AM is being
transported away from the eyewall by the radial advection of the outflow, but is mainly
compensated by the vertical AM transport of the eyewall updraft. As the tangential wind
speed at the lower levels decreases outward from the central eyewall and upward near the
top of the near-surface inflow as shown in Huang et al. (2020) ([24]), radial advection of
mean AM is positive and vertical advection of mean AM is negative below 1.5 km height. In
the eyewall, radial advection of asymmetric eddy AM (Figure 8c) is mostly negative and is
somewhat compensated by positive vertical advection of asymmetric eddy AM (Figure 8d).
The impacts of the Coriolis force are contributing to positive and negative AM tendencies
in the boundary layer and upper outflow layer, respectively, as a consequence of the strong
near-surface inflow and upper outflow (Figure 8e). As a sum (without the turbulent friction
term), the net AM budget (Figure 8f) is mainly negative in the eyewall and low-level
outer vortex at this time near the track deflection as seen in the ceased intensification (see
Figure 3d). The overall features are similar to those in the simulations of Maria ([24]),
except that the near-surface AM tendency is positive for the latter. Indeed, we find that the
net AM budget above the inflow boundary layer does not commonly provide similar AM
tendencies of the typhoon near the track deflection for all four experiments, despite that
their most significant positive and negative terms remain the same. Removal of the Taiwan
terrain has also somewhat modified the AM budget terms for the four experiments but still
retains the same major contributions. The intensity and structure variations of the inner
vortex do not greatly affect the track evolution as found in the physics-sensitivity tests.

Figure 9 shows the height-radius cross-sectional azimuthal mean of angular momen-
tum budget (m2 s−2) for CTL at 1800 UTC on 8 August (54 h of forecast) as the track
deflection is near completion. The major negative and positive budget terms remain un-
changed, both still counteracting each other (Figure 9a,b). However, radial advection
of asymmetric eddy AM becomes more negative in the outer lower-tropospheric vortex
(Figure 8c), while its associated vertical advection (Figure 8d) remains to produce some
positive tendency in the eyewall below 9 km height. At 54 h, the tropospheric AM tendency
is mainly negative outside the eyewall as the typhoon has further weakened (see Figure 3).
The AM budget terms for the four experiments are more similar at this time, but M3,
M6, and M9 produce less negative AM tendency in the inner tropospheric vortex (not
shown) than CTL shown in Figure 9f. Thus, the vortex eddy becomes more important
at later deflection stages to consume the mean AM due to the development of a more
asymmetric vortex.
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Figure 8. The height-radius cross-sectional azimuthal mean of angular momentum budget (m2 s−2)
for CTL at 0600 UTC on 8 August including (a) radial advection of mean AM, (b) vertical advection
of mean AM, (c) radial advection of asymmetric eddy AM, (d) vertical advection of asymmetric
eddy AM, (e) the torque exerted by the Coriolis force, and (f) the sum of all the budget terms. The
horizontal radial and vertical wind components are referenced to the vectors (m s−1) at the lower
right for all the panels.



Atmosphere 2022, 13, 1817 14 of 22

Atmosphere 2022, 13, x FOR PEER REVIEW 15 of 23 
 

 

produce less negative AM tendency in the inner tropospheric vortex (not shown) than 
CTL shown in Figure 9f. Thus, the vortex eddy becomes more important at later deflection 
stages to consume the mean AM due to the development of a more asymmetric vortex. 

 
Figure 9. As in Figure 8 but for CTL at 1800 UTC on 8 August (54 h of forecast). The horizontal radial 
and vertical wind components are referenced to the vectors (m s−1) at the lower right. 

4.2. Potential Vorticity Budget 
A potential vorticity budget can be used to diagnose the vortex motion that is steered 

toward the maximum positive PV tendency. We have applied the regression method to 
estimate the simulation translation of Lekima following Wu and Wang (1999) ([33]). This 
method has shown a reasonable quantification for the typhoon translation induced by 
different physical processes in Huang et al. (2019) ([21]). In this study, the regression takes 
into account the wavenumber-one (WN-1) PV budget within a radius of 150 km of the 

Figure 9. As in Figure 8 but for CTL at 1800 UTC on 8 August (54 h of forecast). The horizontal radial
and vertical wind components are referenced to the vectors (m s−1) at the lower right.

4.2. Potential Vorticity Budget

A potential vorticity budget can be used to diagnose the vortex motion that is steered
toward the maximum positive PV tendency. We have applied the regression method to
estimate the simulation translation of Lekima following Wu and Wang (1999) ([33]). This
method has shown a reasonable quantification for the typhoon translation induced by
different physical processes in Huang et al. (2019) ([21]). In this study, the regression takes
into account the wavenumber-one (WN-1) PV budget within a radius of 150 km of the
vortex center. Figure 10 shows the WN-1 horizontal flow and PV tendency budget averaged
in 1–8 km height and within 30 min of the analysis time of 0600 UTC on 8 August for
CTL. At this time near the track deflection, the net WN-1 PV budget (Figure 10a) is more
dominated by horizontal PV advection (Figure 10b) with induced northward translation
of 2.7 m s−1 compared to vertical PV advection with induced northward translation of
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1.37 m s−1 (Figure 10c) and differential diabatic heating with induced northward transla-
tion of 0.38 m s−1 (Figure 10d). The induced total translation is mainly northward at a
speed of 4.43 m s−1, which follows the embedded WN-1 flow quite well and is in good
agreement with the actual movement at 42 h as shown in Figure 3.
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Figure 10. Wavenumber-one (WN-1) horizontal flow and PV tendency budget (shaded colors in
10−5 PVU s−1 with the reference bar below) averaged in 1–8 km height and in 30 min of the analysis
time at 0600 UTC 8 August for CTL. The budget terms are (a) net budget, (b) horizontal PV advection,
(c) vertical PV advection, and (d) differential diabatic heating. The WN-1 horizontal wind (m s−1) is
referenced to the vector at the lower right. The number at the top right of each panel indicates the
magnitude of the regressed translation speed of the vortex corresponding to the vector given at the
center of each panel (typhoon center).
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Figure 11 shows the PV budget results, similar to Figure 10, but at the analysis time
of 1800 UTC on 8 August (54 h of forecast) for CTL when the track deflection is near
completion. At this time, the actual vortex movement is somewhat westward. The induced
total translation of 3.95 m s−1 is roughly north-northwestward (Figure 11a), which is also
dominated by horizontal PV advection with an induced north-northward translation of
3.83 m s−1 (Figure 11b) considerably larger than both vertical PV advection and differential
diabatic heating (Figure 11c,d). The WN-1 flow embedded around the inner vortex is
roughly northwestward, but mainly northward further northwest and southeast of the
vortex. Consequently, the vortex moves roughly northwestward at this time as seen in
Figure 3. For the vortex translating into the open ocean away from the topography, the
vortex movement is dominated by the horizontal flow as found in Huang et al. (2022) ([26])
and Nguyen and Huang (2021) ([32]).
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4.3. Typhoon Translation with Perturbed Initial Conditions

In this subsection, we summarize the impacts of different perturbed initial conditions
on typhoon translation and track deflection by utilizing the WN-1 PV budget. Figure 12
shows the vortex translation induced by different wavenumber-one PV budget terms for
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CTL, M3, M6, and M9, and their sensitivity experiments without the Taiwan terrain. In
general, the net PV budget is dominated by horizontal PV advection near the deflection and
after its completion (42–60 h). At 66 h, as the typhoon moves close to mainland China, this
dominance is less pronounced. All four experiments show similar translation directions
with time but at somewhat different speeds. Comparing their track behaviors as shown in
Figure 7, the typhoon movement actually differs with time. For example, the track for CTL
begins to turn more westward at 48 h from northward at 42 h as seen in Figure 3, which
is well captured by the net WN-1 PV tendency (Figure 12a). The track for M3 is mainly
northward in 48–54 h and is also reflected in the net PV tendency (Figure 12b). However, it
becomes more westward after 54 h for M6 and slower after 48 h for M9, and both are also
well indicated by the net PV tendency. Nevertheless, some northward translation near and
after the track deflection is commonly produced for the four experiments.
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Figure 12. The translation vectors induced different wavenumber-one PV budget terms including
the net budget (TSUM), differential diabatic heating (HDIA), vertical PV advection (VDAD), and
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referenced to the vector (m s−1) given at the lower right of each panel.
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The track behaviors can be modified when the Taiwan terrain is removed. For CTL, the
net PV tendency without the impact of the Taiwan terrain indicates much less northward
movement and slower translation before 54 h (Figure 12e). In general, the vortex movement
for M3 and M6 is slower and less northward as seen in their net PV tendencies (Figure 12f,g).
However, the difference is less pronounced for M9 as the deviations between the tracks
with and without the Taiwan terrain are smaller and appear at later stages (see Figure 7d,h).
After 54 h, the former is more westward than the latter as found in their net PV budget
(Figure 12d,h). Note that the former track for M6 indeed becomes more westward near
the later deflection (see Figure 7c), which might be contributed by the effect of differential
diabatic heating that induces a southward translation of about 2 m s−1 in the presence of
the Taiwan terrain. However, horizontal PV advection remains to dominate the vortex
movement with and without the Taiwan terrain.

4.4. Rapid Intensification Facilitated by Lower-Stratospheric Responses

The simulated intensification of Lekima is changed by different physics schemes as
shown in Figure 4. The use of the new Tiedtke cumulus parameterization has considerably
increased the intensification rate within the second forecast day, in particular for CTL. The
central sea-level pressure dropping larger than 50 hPa in the earlier 30 h has exceeded the
typical RI. The typhoon intensification is dynamically linked with the evolution of the total
PV amount in the inner vortex as illustrated in Huang et al. (2022) ([23]). Figure 13 shows
the azimuthal-mean PV at 42 and 54 h for CTL and its sensitivity test with the new Tiedtke
scheme at 30 and 42 h. At 42 h, there are major PV zones located at the lower-stratospheric
layer over 16 km height, the upper eye in 12–16 km height, and the tropospheric eyewall
below 12 km height (Figure 13a). The formation of the intense PV tongue extended from
the upper tropospheric eyewall is a precondition signature of typical RI as shown in Tsujino
and Kuo (2020) ([34]). At 54 h, the typhoon intensity for CTL has decreased in association
with the reduced PV amounts inside 0.5 degrees and an outward displacement of the
eyewall (Figure 13b). These results at early stages with a typical RI are consistent with
previous studies for RI (e.g., [30,34,35]).

A stronger RI can be produced in the sensitivity experiment with the new Tiedtke
for CTL. At 30 h, the major PV features associated with this sensitivity experiment are
similar to those at 42 h for CTL (Figure 13c). However, the lower-stratospheric PV (LSPV)
above 16 km height has significantly intensified with the lowest central sea-level pressure
of 920 hPa at this time. Above the upper outflow at about 13–18 km height, a radial inflow
actually is induced to transport the LSPV into the region of the upper eye. An intense
LSPV core exceeding 60 PVU can be produced near the upper eye. A strong downward
connection of LSPV with the tropospheric PV is also evident inside the radius of the
maximum wind speed of the vortex (Rmax). At 42 h, the typhoon intensity slightly declined
with the major PV features (Figure 13d) similar to CTL at 54 h. There is a difference of about
15 hPa in the central sea-level pressure between the two experiments (see Figure 4), but
their PV intensities and structures in the inner vortex are only slightly different. Thus, the
formation of the intense LSPV core near the upper eye is a signal of enhanced RI when the
LSPV is being produced inside Rmax by the developing transverse vortex circulation over
the intense upper outflow layer. Similar lower-stratospheric PV and transverse circulation
are also exhibited in the Lekima simulation of Shi and Chen (2021) using a regional model
([30]). Herein, the significance of the LSPV core formation in facilitating the enhanced RI
in Lekima is highlighted by the MPAS simulations in this study. It is noted that the LSPV
signal as a facilitation precondition of RI for Lekima also appears in other super-intense
typhoons associated with severe RI that will be reported in another study.
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Figure 13. (a) The height-radius cross-sectional potential vorticity (shaded colors in PVU) at 42 h
for CTL, (b) as in (a) but at 54 h. (c) as in (a) but at 30 h for the sensitivity experiment where the
Grell–Freitas cumulus scheme in CTL is changed to the new Tiedtke scheme, and (d) as in (c) but at
42 h. The horizontal radial and vertical wind components are referenced to the vector (m s−1) given
at the lower right. The bold green line in each panel indicates the radius of maximum horizontal
wind speed.

5. Conclusions

Typhoon Lekima, occurring early August 2019, moved northwestward toward Taiwan
and took a northward-deflecting track offshore northeast of Taiwan. Before the earlier track
deflection, rapid intensification took place with a central sea-level pressure deepening of
70 hPa in 40 h. In this study, a global model MPAS at a multi-resolution of 60-15-3 km, with
a 3 km resolution targeted at the Taiwan area, is utilized to explore the track responses of
Lekima and identify the topographic effects of the CMR on the typhoon and the associated
track deflection. A dynamic vortex initialization (DVI) is applied to spin up the inner vortex
core, which employs a continuously cycled model integration of 1 h for a number of runs
until the integrated vortex has reached the observed best track maximum wind speed of
the vortex. For forecast sensitivities to initial conditions, twenty members are generated by
randomly perturbing the initial model state with the spin-up vortex.

The ensemble forecasts of twenty members have collected a sufficient spreading
of simulated typhoon tracks, but with similar maximum intensities. All the members
produce similar typhoon intensification rates, but only approximate the observed RI at the



Atmosphere 2022, 13, 1817 20 of 22

early stage. Some of the cyclone tracks have been reasonably simulated with northward
track deflection. We selected four forecasts with more pronounced track deflection more
consistent with the best track. Terrain-sensitivity tests for the four experiments, which
reset the Taiwan terrain heights to zero, show that the northward track deflection is not
produced, but associated with similar intensification rates and peak intensities for the
four members. The northward track deflection induced by the topographic effect of the
Taiwan terrain is similar to that explored in Huang et al. ([25]) that the northerly flow
component east of the vortex center is enhanced by the joined recirculating flow of the
typhoon around the southern end of Taiwan to drive the vortex northward. This track
deflection mechanism is further illustrated by the four members in this study. A common
feature of their differences in wavenumber-one flow exhibits a pair of large gyres around
the typhoon center near the earlier deflection, which then rotates counterclockwise with
time following the continued deflection. The wavenumber-one potential vorticity budget
for these ensemble forecasts indicates that the vortex motion is dominated by horizontal
PV advection, while both vertical PV advection and differential diabatic heating are only
minor. This can be attributed to the fact that the inner typhoon core is moving offshore and
away from the Taiwan terrain.

The angular momentum (AM) budget near the track deflection indicates that the
rotational momentum of the inner typhoon is mainly contributed by negative AM tendency
from radial advection of mean AM and positive AM tendency from vertical advection
of mean AM, both appearing to counteract each other. Radial advection of asymmetric
eddy AM is also negative in the eyewall but somewhat compensated by positive vertical
advection of asymmetric eddy AM. After the track deflection is completed, the typhoon
intensity is weakened in the control experiment, owing to the increased negative impacts
from the radial advection of both mean and eddy AM in the more-asymmetric lower-
tropospheric vortex.

The typhoon intensification and peak intensity are affected by physical parameteri-
zations in the forecasts, but without greatly reducing the track deflection. Some specific
cumulus schemes may produce the strongest RI and intensity, close to the best track val-
ues. The evolution of the vortex intensification is closely linked with the intensity of
azimuthal-mean PV in the inner vortex. A typical RI can be approximately induced when
the tropospheric PV tongue in the upper eyewall is produced as a facilitation precondition
of RI ([34]). As the tropospheric PV in the inner vortex is decaying, the developed typhoon
circulation also gradually weakens. However, for a RI to be enhanced at earlier develop-
ment stages, a lower-stratospheric PV (LSPV) core near the upper eye needs to be generated
through the developed transverse vortex circulation. For Lekima, a strong downward
connection of LSPV with the upper-tropospheric PV in the inner vortex is evident during
the enhancement of RI. The mechanisms of enhanced RI associated with other super-intense
typhoons have also been investigated and the results will be presented in another study.

This study has largely complemented our previous FV3GFS simulations ([25]) by
investigating the forecast track sensitivities to the initial perturbations in a spin-up vortex
for Typhoon Lekima (2019) and detailing the AM budget and PV budget for the associated
track deflection mechanism from the ensemble. Both high-resolution MPAS and FV3GFS
simulations show similar track deflection of Lekima in response to the topographic effects of
the Taiwan terrain. This study further explores the track behaviors and dynamics from the
ensemble forecasts to identify that the track deflection of Lekima is probably not induced.
The RI signature of the simulated Lekima regarding the induced intense LSPV core has also
been highlighted in this study.
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