
Extracting 3D Radar Features to Improve Quantitative Precipitation Estimation in

Complex Terrain Based on Deep Learning Neural Networks

YUNG-YUN CHENG,a CHIA-TUNG CHANG,a BUO-FU CHEN ,a HUNG-CHI KUO,a,b AND CHENG-SHANG LEEa,b

a Center for Weather Climate and Disaster Research, National Taiwan University, Taipei, Taiwan
b Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

(Manuscript received 14 February 2022, in final form 25 October 2022)

ABSTRACT: This paper proposes a new quantitative precipitation estimation (QPE) technique to provide accurate rain-
fall estimates in complex terrain, where conventional QPE has limitations. The operational radar QPE in Taiwan is mainly
based on the simplified relationship between radar reflectivity Z and rain rate R [R(Z) relation] and only utilizes the single-
point lowest available echo to estimate rain rates, leading to low accuracy in complex terrain. Here, we conduct QPE using
deep learning that extracts features from 3D radar reflectivities to address the above issues. Convolutional neural networks
(CNN) are used to analyze contoured frequency by altitude diagrams (CFADs) to generate the QPE. CNN models are
trained on existing rain gauges in northern and eastern Taiwan with the 3-yr data during 2015–17 and validated and tested
using 2018 data. The weights of heavy rains ($10 mm h21) are increased in the model loss calculation to handle the unbal-
anced rainfall data and improve accuracy. Results show that the CNN outperforms the R(Z) relation based on the 2018 rain
gauge data. Furthermore, this research proposes methods to conduct 2D gridded QPE at every pixel by blending estimates
from various trained CNN models. Verification based on independent rain gauges shows that the CNN QPE solves the un-
derestimation of the R(Z) relation in mountainous areas. Case studies are presented to visualize the results, showing that the
CNN QPE generates better small-scale rainfall features and more accurate precipitation information. This deep learning
QPE technique may be helpful for the disaster prevention of small-scale flash floods in complex terrain.
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1. Introduction

Taiwan suffers from frequent flash floods due to complex
and steep terrain interplaying with short-term and small-scale
torrential rainfall. Accurate precipitation information is urged
to prevent and monitor such meteorological disasters. How-
ever, the rain gauges in Taiwan are mainly located on plains,
while few are in the mountains, and this uneven rain gauge
distribution limits the accuracy of rainfall monitoring (Wu
et al. 2016; Chung and Yao 2020).

Central Weather Bureau (CWB) of Taiwan started to con-
struct an S-band weather radar network in 2002 and develop
a weather monitoring system–quantitative precipitation esti-
mation and segregation using multiple sensors (QPESUMS)
to describe the spatial distribution of rainfall in areas without
rain gauges (Gourley et al. 2002; Chung and Yao 2020). The
operational quantitative precipitation estimation (QPE) method
used in QPESUMS is mainly based on Xin et al. (1997), by
which the rain rate is calculated from Z 5 32.5R1.65, where Z
is radar reflectivity (mm6 m23), and R is rain rate (mm h21). This
R(Z) formula can be used based on the relationship between
rainfall observation and high temporal- and spatial-resolution
radar observation to calculate two-dimensional precipitation.
Namely, using the R(Z) relation estimates precipitation at each
grid point, then combining them to form 2D rain maps. Never-
theless, the disadvantage of the R(Z) relation is that this method
only uses the lowest available echo to the surface to estimate the
precipitation. Although it is convenient to operate, the quality of

precipitation estimates is affected by partial beam blockage,
drop size distribution uncertainty, and the distance from the ra-
dar station (Sachidananda and Zrnić 1987; Ryzhkov et al. 2014).

Numerous QPE methods using dual-polarized parameters
have been proposed in recent years. Adopting the specific dif-
ferential phase (Kdp) parameter makes QPE undisturbed
from beam attenuation (Zrnić et al. 2000). Several studies
have used differential reflectivity (ZDR), Kdp, and Z to calcu-
late raindrop size distribution and obtain new QPE formula
(Zhang et al. 2001; Bringi et al. 2002; Brandes et al. 2003). Re-
cent research by Ryzhkov et al. (2014) improved QPE by ap-
plying an attenuation formula during heavy rain events. The
CWB combined these results and techniques to announce
a new generation of QPESUMS system in 2021. The new
QPESUMS system considers different radar scanning strat-
egies and detectable parameters, selects the most suitable
QPE method, and combines them to obtain 2D precipita-
tion estimates (Chang et al. 2021).

However, there are still limitations to the second-generation
QPESUMS system. First, a single formula for individual ra-
dar, even using different radar parameters, is insufficient for
various weather systems and in different regions and terrains
(Ryzhkov et al. 2005a,b; Jou et al. 2015), especially in east-
ern Taiwan. Second, and more importantly, calculating the
accurate precipitation information should consider the ver-
tical structure of the weather system, especially in complex
terrain where beam blockage is a serious problem. How-
ever, the operational QPE method still uses the single
point of radar reflectivity at the lowest available level.
Figure 1 shows the correlation coefficient between Z and R
at Taipei station. In addition to the low-level Z, the Z atCorresponding author:Buo-Fu Chen, bfchen@ntu.edu.tw
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3–9 km above sea level also well correlates with rain gauge ob-
servation, especially in summer and when the rain rate is
larger than 2 mm h21 (Fig. 1b). Therefore, it is hypothesized
that we could obtain more accurate precipitation information
by considering the upper-level reflectivities.

QPE could be regarded as an image recognition task esti-
mating rain rate from 2D or 3D radar reflectivity. Deep
learning has become increasingly popular in Earth sciences
(Reichstein et al. 2019). Most of the recent studies on the
application of artificial intelligence in atmospheric sciences
use deep learning networks (Isola et al. 2017; Vandal et al.
2017; Shi et al. 2015, 2017; Sønderby et al. 2020; Becker et al.
2017; Gentine et al. 2018). A convolutional neural network
(CNN) is one of the most common models that deal with vi-
sual recognition (Krizhevsky et al. 2012). Technically, CNN
acquires features from multidimensional data, flattens these
extracted features, and conducts nonlinear classification or
regression. Lagerquist et al. (2020) used a CNN model to
predict tornado occurrence 1 h ahead. Racah et al. (2017)
used CNN to automatically search and identify weather sys-
tems on satellite cloud images, such as fronts, typhoons, and
atmospheric rivers. Chen et al. (2019) used CNN to estimate
tropical cyclone intensity based on satellite images. There-
fore, this study proposes using CNN to analyze the charac-
teristics of 3D radar data to overcome two major issues of

the currently operational QPE in Taiwan. That is, (i) the 3D
convective structure is not well considered, limiting the accuracy
in the area suffering from beam blockage; and (ii) difficulty of
choosing the optimal parameters of the R(Z) formula that is
suitable for all terrains.

This study proposes a new deep learning QPE technique
that extracts 3D radar echo characteristics through contoured
frequency by altitude diagram (CFAD; Yuter and Houze
1995). First, a cluster of CNNmodels is constructed at existing
rain gauges in northern and eastern Taiwan. Subsequently,
this study proposes new methods for generating 2D rain
maps by the CNN cluster to increase the forecasting practi-
cability. Specifically, we integrate the CNN models trained
with the data at neighboring stations to conduct QPE at
every grid point by using the observation of that specific
grid point. We also compare it with the observation at in-
dependent stations to evaluate the performance of this
new QPE technique. In addition, this study selects 13 June
and 8 October 2018 for case analyses to visualize the
results.

The paper is organized as follows. Section 2 describes data,
model, and methods for generating 2D rain maps with the
CNN cluster. Section 3 evaluates the overall performance of
the CNN QPE model at the rain gauges. Independent verifi-
cation of the generated 2D rain maps and two case studies are

FIG. 1. The correlation coefficient (shading) between radar reflectivity and surface rain rates for (a) all samples and
(b) samples with rain rates$ 2 mm h21 from 2014 to 2018 at Taipei station. The data are stratified by various months
(x axis) and altitudes (y axis).
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discussed and visualized in section 4. The summary and future
direction are provided in section 5.

2. Data and methodology

a. Rainfall data and the problem setup

This study proposes a deep learning QPE technique that
utilizes 3D QPESUMS radar reflectivity as input to estimate
2D precipitation. The target areas include northern and east-
ern Taiwan (i.e., Taipei Metro Area, Yilan, Hualien, and
Taitung). Hourly rainfall data of 166 rain gauges during 2014–18
were used as the ground truth, or the target of the model, in-
cluding 13 CWB conventional weather stations and 153 auto-
matic rain gauge stations (Fig. 2a). To establish a cluster of
CNN models at existing rain gauges, data from 109 of the 166
stations were selected for training CNN models. These 109 rain
gauges have almost no data loss from 2014 to 2018 (Fig. 2, blue
dots).

On the other hand, this study used the data from the re-
maining 57 stations (Fig. 2, red stars) to evaluate the proposed
QPE technique independently. These 57 gauges have good
observations after 2018 but have substantial data loss during
2014–17, so they are unsuitable for training CNN models.
Note that our final goal is to generate the 2D rainfall at each
grid point, as the example shown in Fig. 2b, consisting of
4 3 5 5 20 grid points. Thus, this study tested some methods
(see section 2d for more detail) to estimate the rainfall at
the 57 independent stations (Fig. 2b, red stars) based on the
trained CNN models at the nearby stations (Fig. 2b, blue
dots). Suppose the rainfall at these 57 independent stations

can be accurately estimated by blending estimates from
nearby models, which are trained with data at locations rep-
resented by the blue dots in Fig. 2b, with inputs of the spe-
cific target location represented by the red star in Fig. 2b. In
that case, we argue that rainfall estimates on the grid are
useable.

b. Radar data and data preprocessing

This subsection introduces the QPESUMS radar reflectivities
used in this study. The QPESUMS interpolated observations
from multiple radars in Taiwan to form a high-resolution
3D gridded dataset covering the region of 208–278N and
1188–123.58E. The horizontal and temporal resolutions are
0.01258 latitude–longitude and 10 min on 21 vertical layers.

The preprocessing process assists the CNN in learning the
storm’s vertical structure and saves computing resources; it
transforms the 3D reflectivity into the contoured frequency
by altitude diagram (CFAD) as the model input. Previous
studies used CFADs to combine horizontal and vertical storm
features and to easily display and describe the convective life
cycle (Yuter and Houze 1995; Storer et al. 2014).

To obtain a CFAD, the reflectivity frequency distribution
of each radar scan was calculated within a radius of 2.5 km to
the target station (Fig. 3, left) and radar reflectivity is classified
into 15 5-dBZ bins, which are commonly used in a CFAD. For
example, the CFAD at Taipei station at 0610 local standard
time (LST) 8 September 2018 (Fig. 3, right) is useful for distin-
guishing that the deep convection cloud developed up to
12 km, and the radar reflectivity value decreased with height.
Also, the upper-layer values of the convective cloud are

FIG. 2. (a) The terrain (shading) of the study area, stations for training deep learning models, and independent stations
for verification. (b) Schema of QPESUMS grid, stations for training, and stations for independent verification.
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around 15–20 dBZ. This information might be helpful in train-
ing a CNN QPE model, especially when low-level reflectivity is
blocked in complex terrain areas.

c. CNN and model design

This study chooses an approach of first training 109 inde-
pendent per-station CNN models, which extract features from
the CFAD and regresses to the hourly rainfall. Training per-
station models for individual stations is the most straightfor-
ward way to make the model learn local characteristics for
QPE in complex terrain, as long as we ensure that the model

does not overfit the validation/training data (see later the re-
sults regarding Fig. 5).

As the input CFAD array only has dimensions of 21 3

15 3 6, we do not need a very deep CNN that may easily
overfit the data. The proposed model consists of three kinds
of neural layers (Fig. 4). The convolution layer is the core
of a CNN model, utilizing convolution kernels to detect
spatial features and update the weight during training via
gradient descent with backpropagation, in order to minimize
the loss function. Compared to traditional machine learning
approaches, which cannot learn the spatial relationships in

FIG. 3. Transforming (left) 3D radar reflectivity into (right) the CFAD. The shading in the right panel represents the
frequency of radar reflectivity on each layer.

FIG. 4. The architecture of the proposed deep learning model. The blue rectangle inside the “feature extraction”
module indicates [convolution layer (output dimension, kernel size, stride, padding)/activation function]. The orange
rectangle inside the regression module indicates [fully connected layer (output dimension)/activation function]. The
blue arrow means the direction of prediction. The black arrow means the backward propagation for training. The loss
function of this model has two terms: weighted MSE and classification over 20 mm.
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images, convolution kernels can assist a deep learning model
in training directly with images. The activation function layer
allowing the model to be nonlinear is an equation with no ad-
justable parameters}different from the convolution layers,
where each convolutional kernel contains weights that can be
adjusted by training. Currently, rectified linear unit (RELU)
is the most commonly used activation function in CNNs; it is
defined as

f (x) 5 max(x, 0): (1)

This equation only allows the result greater than zero from
the previous layer to pass to the next layer and can improve
the learning efficiency of the model (Nair and Hinton 2010;
Glorot et al. 2011). The third kind of layer is the fully con-
nected layer, similar to that in a traditional artificial neural
network (ANN; Jain et al. 1996). The purpose of the fully con-
nected layer is to consider the overall characteristics of the
data and make judgments, i.e., using the results extracted
from convolutional layers for subsequent classification or re-
gression. Finally, according to some ablation experiments and
the characteristic of the CFAD that lacks contours, our pro-
posed model omits the pooling layer usually used in deeper
CNNs, following Chen et al. (2018).

At each CNN model training station (Fig. 2, blue dots), six
pieces of 10-min CFADs (6 3 10 min 5 1 h) for the previous
hour are concatenated as model input, 21 3 15 3 6 in dimen-
sions (Fig. 4, upper left). As shown in Fig. 4, our model contains
two parts: the feature extraction module and the regression
module.

The feature extraction module includes four convolution
layers, each followed by a ReLU. The kernel size is 3 3 3 for
all layers, a common setting in CNNs. The filter sizes, which
means the number of convolutional filters in a given layer, are
set as 8, 32, 64, and 128, respectively. A key reason for select-
ing the number of convolutional filters is that we hope to
transform the 21 3 15 3 6 input CFADs to 1024 extracted
features, a common and arbitrarily selected feature number in
neural networks. Also, to down sample the data to 1024 fea-
tures, strides and padding are subsequently determined as
[1, 2, 1, 2] and [2, 2, 0, 0] for the four layers. The stride is the
parameter to decide how many paces the kernel will move
from pixel to pixel. For instance, if the stride equals 2, the
kernel will slide two pixels after finishing scanning the former
pixels (Albawi et al. 2017). The padding is the strategy in the
convolution layer. If the padding equals 2, the model will add
extra 2 pixels with 0 in each column and row around the
boundary of the image to ensure each pixel in the image is
scanned the same number of times (Albawi et al. 2017).

Of note, some other combinations of convolution layer
numbers, filter numbers, strides, and padding numbers were
tested, such as one with three convolution layers and another
with five. Results show that the CNN with three convolution
layers has the poorest performance. The five-layer CNN per-
forms similarly to the CNN with four convolution layers, but the
four-layer CNN appears to achieve more stability (i.e., less fluc-
tuation in the curve of validation loss). Therefore, we decide to
use four convolution layers for the final configuration.

In the wake of feature extraction, we flatten the features
from CFADs and propagate them into the second-part regres-
sion module. Three fully connected layers are used to regress
to the hourly rainfall, and the results also pass through a
ReLU after each layer. The neuron sizes of the layers are se-
lected as 64, 16, and 1, following common practice in machine
learning. Note that reducing the number of features with each
successive fully connected layer enables the model finally esti-
mates the hourly rainfall, a single value.

Regarding the data-use strategy, the CFADs and the paired
hourly rainfall labels at each CNN training station (Fig. 2,
blue dots) were categorized into three groups: training, valida-
tion, and testing. This study divided every 4 days from 2014 to
2017 to form the training and validation datasets. In each
4-day cycle, the first 3 days belong to the training dataset, and
the latest day is used for validation. The purpose is to main-
tain the statistical consistency between the training and vali-
dation datasets to avoid model bias due to seasonal and
diurnal cycles. Furthermore, we selected the CFADs in 2018
as the testing dataset to evaluate the CNN model’s perfor-
mance. Note that the testing dataset for evaluating the model’s
performance at the training site and the independent verifica-
tion dataset for evaluating the model’s performance at inde-
pendent stations (Fig. 2, red stars; refer to section 2a) are both
from 2018. In other words, the testing dataset is separated
from training/validation by time, whereas the independent ver-
ification dataset is separated from training/validation/testing
by location. Thus, the evaluation based on the testing dataset
can cooperate with the independent station evaluation to gain
a comprehensive insight into the model performance.

In machine learning, the loss function helps the model fit
optimal weights through gradient descent, which attempts to
find the global minimum loss based on the training dataset.
The most commonly used loss function for regression is the
mean square error (MSE):

MSE 5
1
N
∑
N

i51
(Xi 2 Yi)2, (2)

where N is the sample number of training data, X is model
prediction (i.e., hourly rainfall estimates), and Y is the target
from rain gauge data. MSE could magnify the punishment for
large-error samples compared to calculating the absolute er-
ror. However, using MSE as a loss function has the drawback
of making the model ignore the small number of imbalanced
samples (i.e., extreme rainfall) in the training dataset.

Unfortunately, in our study, the frequencies of different
rainfall levels are highly imbalanced. Taking the Taipei sta-
tion as an example, there was only 0.5% of data greater than
10 mm h21 and 90% of data on sunny days (rain rate 5 0) ac-
cording to hourly rainfall data from 2014 to 2018. To solve
this problem, we used two alternative components in the loss
function, instead of the MSE, to improve the model perfor-
mance for heavy rainfall events: weighted MSE and classifica-
tion of rainfall over 20 mm.

Weighted MSE is described here. Before gathering the er-
rors together, multiplying the weight based on the target value
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emphasizes the accuracy of the heavy rain (Shi et al. 2017) so
that Eq. (2) is rewritten as

weighted MSE 5
1
N
∑
N

i51
w(Yi) 3 (Xi 2 Yi)2, (3)

where w(Yi) is designed as

w(Yi) 5
1 if Yi , 1 mm

Yi if Yi $ 1 mm
:

{
(4)

When the rain gauge data (Yi) is greater than 1 mm h21, the
weight w would be the rain gauge data itself. On the other
hand, when the rain gauge data (Yi) is less than 1 mm h21, the
w would be one.

The other loss term is described: classification of rainfall
over 20 mm. The purpose of this term is to set the following
goal for the CNN “classify if it is heavy rain or not first, then
do the regression for the certain region.” We hope the model
can learn the classification for heavy rainfall greater than
20 mm h21. This component of the loss function is defined as

classification over 20 mm
(only if Yi $ 20) 5

0 if 20 # Xi

200 if 10 # Xi , 20

400 if 0 , Xi , 10

600 if Xi 5 0

:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

This component is only effective when the rainfall (Yi) is
over 20 mm h21, and additional punishments are given if
the model predicts a value that falls in various categories
(with a 10 mm h21 interval).

Finally, a cluster of CNN models at the 109 training stations
(Fig. 2) is constructed based on the above CNN design. Each
CNN model’s weights are independent and should not share
with other stations because every station has its own features,
including geographic location, distances from radars, and ter-
rain height. Each CNN model was trained on the Intel Xeon
CPU E5-1650 v2, using the TensorFlow 2 framework. It only
took 30 min to complete 200 epochs for training at each sta-
tion, and most of the CNN models only required 50–150
epochs to reach a minimum of the validation loss for learning
this task and getting the optimal weight. The performance of
the CNN cluster is described in section 3.

d. Producing gridded QPE product

The gridded QPE product is demanded to increase the
QPE’s practicability of weather forecasting for hydrometeo-
rology use, such as calculating the average rainfall in certain
river basins. This study proposes two gridded QPE products
based on the CNN clusters, which have been trained at the
109 rain gauge sites, to provide 2D rain maps. As mentioned
in section 2a, data from 57 independent stations are prepared
to verify the performance of the two gridded QPE products.
It is worth noting that what we do here is to conduct QPE
based on the radar CFAD at each point rather than simply
doing interpolation according to the QPEs at nearby rain
gauges. It is hypothesized that each of the trained CNNs is

representative of the nearby area, and using the radar obser-
vation of each point could better reflect the fine-scale rainfall
features. Moreover, if the rainfall at the 57 independent sta-
tions can be accurately estimated, we can argue that rainfall
estimates at every grid point are useable.

The first method is the nearest-station method. Assuming
that the CNN of the nearest station has similar precipitation
characteristics to the target location, this method uses the tar-
get point’s CFAD as input and feeds it into the CNN of the
nearest station to get the QPE. As illustrated in Fig. 2b, this
method utilizes the CFAD at the independent station (Fig. 2b,
red star) and feeds it into the CNN of the nearest training sta-
tion C. The advantage of this method is that it is easy to operate
and effectively utilizes the CFAD at each target grid point.

The second method is the three stations blending method.
This method feeds the target point’s CFAD into the CNNs of
the three nearest stations and integrates the results based on
the inverse distance weighted interpolation (IDW; Bartier
and Keller 1996). As shown in Fig. 2b, utilizing the CFAD at
the independent station (red star) as the input for the three
nearest CNNs (station A, B, and C) and combining the three
rainfall estimates with the IDW leads to the final QPE.

The IDW interpolates the information into the target point
using a weighting function inversely proportional to the
square of the distance, defined as

Ai 5

∑
3

k51

1
r2ik

3 Ok

∑
3

k51

1
r2ik

, (6)

where Ai,Ok, and rik represent the hourly rainfall at the target
point, the observation, and the distance between the target
point and the observation. Although this method is more
comprehensive than only considering the nearest CNN, it
would smooth the extreme rainfall.

On the other hand, two additional baseline methods plot-
ting 2D rain maps are used for verifying our gridded QPE
products: R(Z) relation and Cressman method (Cressman
1959). Both R(Z) and Cressman methods have been used at
CWB. The R(Z) was the basic method for producing radar
QPE in the operational QPESUMS. The Cressman method is
one of the most common operational objective analyses for
interpolating rain gauge observations into a 2D rain map. The
equation of the Cressman method is

An
i 5 Fn21

i 1

∑
N

k51
Wik 3 (Ok 2 Fn21

k )

∑
N

k51
Wik

, (7)

where A, F, andOk are estimated value of precipitation, guess
(background) value (first guess value 5 0), and observation,
respectively. The subscripts i and k represent the target point
and the location of observation, respectively. The term n
means the result of the nth adjustment andW is the weighting
factor, defined as
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Wik 5

R2 2 r2ik
R2 1 r2ik

if rik , R

0 if rik $ R

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩ (8)

where r is the distance between the target grid point and
the observation, and R is the radius of influence. Similar to
the CWB setting, the initial guessing field (F1) is 0, and
adjust the value three times given different influence ranges
(R): 10, 7, and 5 km, respectively.

3. The verification of CNN models at the
training stations

a. Examination of overfitting, benefits of the per-station
approach, and impacts of upper-level Z

Before evaluating the model performance against the base-
line R(Z) relation, several experiments shown in this subsec-
tion justify or explore: (i) the trained models do not overfit
the validation and testing data; (ii) the advantage of the per-
station model approach; and (iii) the contribution of upper-
level CFAD information on QPE.

First, analysis is conducted to evaluate the CNN estimation
accuracy for the training, validation, and testing datasets. As a
deep learning model generally overfits the training data be-
cause of its large number of neurons, it is critical to confirm
that the trained model does not overfit the validation and test-
ing data. As we examined the hourly rainfall estimated by the
CNN models and the corresponding observation (Figs. 5a–c),
the 109 CNN models for the 109 training stations show a good
performance on the training data according to the linear-
regression line slope of 0.91 and a correlation coefficient
(C.C.) of 0.72 (Fig. 5a). On the other hand, the CNN models
have similar performance on both the validation (Fig. 5b) and
testing (Fig. 5c) datasets. The slopes and C.C. in Figs. 5b and 5c
are slightly lower than those based on the training data, but the
regression line still falls in the interval of 20% error (Fig. 5, gray
shaded area). Furthermore, the boxplots in Fig. 5d show that
the error distributions for the testing dataset are comparable
to that of the validation set and even slightly better for hourly
rainfall . 30 mm, implying that the CNN models can success-
fully capture features in the CFAD and stably estimate rainfall
for future applications.

In addition, to realize the benefit of training CNN models
in the per-station approach, we conducted experiments of
training a general CNN model. That is, rainfall estimates of
the 109 stations are from a single CNN model with fixed
weights for various stations. Note that, as the training dataset
will be huge in this manner, we randomly select 8000 rainfall
events for each of the 109 stations in 2014–17 to form the
training and validation datasets for training the general
model.

The performance comparison between the general model
and 109 per-station models for the testing dataset (Fig. 6) re-
veals that the per-station CNN models outperform the gen-
eral model with significantly smaller biases. Furthermore, to
understand the model performance in complex terrain, we
categorized the rain gauges above and under 200-m altitude

into the mountain and plain areas, respectively. The differ-
ence in the performance is more obvious for the rainfall sam-
ples in the 52 mountain stations (Fig. 6a) than that of the 57
plain stations (Fig. 6b), and the general model has worse
performance in the mountains presumably because of the
difficulty to learn the local-specialized features. Thus, these
results imply that, as each station has its unique features,
utilizing a general CNN model cannot obtain accurate esti-
mates at each station.

Last but not least, this study also performs a sensitivity ex-
periment on CFAD heights to consolidate the claim that 2D
CFAD images have more predictive power than point reflec-
tivity because upper-level information also correlates with
hourly rainfall. Upper-level information is especially critical
in the mountains where low-level radar beams are blocked.

Three kinds of CFADs are tested as the model input data:
0–2, 0–8, and 0–17 km (Fig. 7). The 0–17-km CFAD is the
standard CFAD used in this study, and a 0–2-km CFAD is
the corresponding 0–17-km CFAD in that values at .2-km
levels are replaced with zero. Although three CFAD experi-
ments have similar performance in plain areas (Fig. 7d), the
CNN models using 0–2-km CFADs have worse performance
in mountain areas (Fig. 7b). Moreover, adding upper-level ra-
dar information can efficiently help the CNN model to obtain
more accurate precipitation for heavy rainfall events. It is
worth noting that 0–8-km CFADs lead to comparable perfor-
mance with 0–17 km CFADs, consistent with an observation
regarding Fig. 1 that most of the high correlation parts are be-
low 8 km. Nevertheless, we select to use 0–17-km CFADs as
the final model input.

b. Evaluating CNN model performance against the
baseline R(Z) relation

This section aims to evaluate the performance of the CNN
QPE models (section 2c) based on the rainfall data at training
stations (i.e., the testing dataset) and compare it to the base-
line R(Z) relation results. It is worth noting that, although nu-
merous QPE methods using dual-polarized parameters have
been proposed, the R(Z) relation used for CWB operational
radar QPE is still the best baseline for this study because
dual-polarized radar observation has not yet been available in
our research area.

As mentioned in section 2a, the rainfall data of 2018 are
used for model verification, and the performance evaluation
is based on mean absolute error (MAE), one of the most
common indexes to verify the model error, and mean absolute
percentage error (MAPE). MAPE is defined as

MAPE 5 ∑
n

i51

∣∣∣∣Xi 2 Yi

Yi

∣∣∣∣ 3 100%
n

, (9)

where Xi, Yi, and n represent the CNN rainfall estimates, the
observation, and the sample number of the testing dataset.
The difference between the MAPE and MAE is that although
the value of |Xi 2 Yi| is identical, the MAPE better reflects the
improvement for different rainfall levels. Again, we categorized
the rain gauges above and under 200-m altitude into the moun-
tain and plain areas.
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Furthermore, the bootstrapping test is used for examining
the statistical significance of the comparisons between CNN
models and the R(Z) relation; it can be done with the follow-
ing steps. Let N be the number of data samples in the evalua-
tion set, K 5 1000 be the number of bootstrap replicates, u be
the evaluation metric, and c be the confidence level of the
test (95%),

1) Do the following N times:
(i) Draw N data samples from the evaluation set.
(ii) Compute u for both models}e.g., the CNN and

Z(R) relation.
(iii) Compute the difference between the two models:

Du 5 uZ(R) 2 uCNN.

2) The result is a distribution of N differences between the
two models. In this distribution of N differences, find the
percentile level corresponding to a Du 5 0. This per-
centile level is the p value of the test.

3) Compare the p value to 1 minus the confidence level. If
p , 1 2 c, we can reject the null hypothesis [the CNN
and Z(R) relation have the same performance] and
conclude that the CNN is significantly better.

The first quantitative analysis compares the performance
between the CNN QPE models and the R(Z) relation. As
shown in Fig. 8, the 109 CNN training stations are categorized
into 52 mountain stations (Figs. 8a,c) and 57 plain stations
(Figs. 8b,d). Generally, although both the pattern of the CNN

FIG. 5. (a)–(c) Heat scatterplots of hourly rainfall estimated by CNN models (y axis) and gauge observation (x axis)
for the 109 stations for (a) training, (b) validation, and (c) testing datasets. Color shading represents the sample den-
sity. The red line and gray shading indicate the perfect regression line and interval of 20% error, respectively. The
black dashed line is the regression line with the slope indicated. The upper-left corner shows the correlation coeffi-
cient (C.C.). (d) Boxplots of error (y axis) in rainfall estimates for various rain-rate bins (x axis) for training (red), val-
idation (blue), and testing (gray) datasets. Numbers N represent the sample numbers. The boxplot’s center line, two
box edges, and upper and lower whiskers represent the median, 25th and 75th percentiles, and 75th/25th percentile61.5
interquartile range, respectively.
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and R(Z) reveal underestimation of heavy rain (.20 mm h21),
the CNN model has better performance than the R(Z) relation
according to the slopes (Fig. 8, black dashed line and texts) and
samples that fall in the interval of 20% error, especially in the
mountain area (Figs. 8a,c) and for heavy rainfall events. For the
plain area, although the improvement of the CNN cluster is not
comparable to the improvement in mountain areas, the CNN
cluster still reduces the underestimation for heavy rainfall
events (Figs. 8b,d). The results suggest that CNN models ana-
lyzing upper-layer radar information outperform the baseline
R(Z) relation.

Subsequently, the rainfall events are divided into seven
groups with 10 mm h21 intervals (Fig. 9). We quantify the im-
provement of the CNN model compared with the R(Z) per-
formance for different rainfall intervals and areas. Their error
distributions, MAE, and MAPE show consistent results in the
preliminary quantitative analysis (Fig. 8) with more details.
Specifically, the CNN outperforms R(Z) quantitatively for
10–60-mm intervals in the mountain areas (Fig. 9a) and has
similar performance in the plain areas for ,40-mm rainfall
(Fig. 9b). Moreover, the bootstrapping test results show that
the performance of the CNN models is significantly better
than the R(Z) relation for 20–40-mm rainfall in the mountain
area. Figure 9 also shows that, for 10–60-mm intervals, the
CNN model performance can improve about 21% in MAPE
and MAE compared to the R(Z) relation. However, the CNN
performs poorly in MAPE for rainfall less than 10 mm
(Figs. 9c,d). The reason is that rainfall values in this range
are too small, so that the MAPE would be high. Neverthe-
less, if we change the verification metrics to MAE, the CNN
model has comparable performance with the R(Z) relation
in the 0–10-mm interval. Moreover, mountain stations ben-
efit more from the CNN model, especially in 20–40-mm
ranges. For 30–40-mm rainfall in the mountain area, CNN’s
MAE improves up to 50% compared with the R(Z) relation
(Figs. 9e,f).

Additionally, we analyze the results of some particular re-
gions in our study area (Fig. 10). All regions performed simi-
larly to that we have mentioned above. We select the Hualien
area and the Taipei metro area as examples. The Hualien
area, with the most complex terrain in Taiwan, is where the
CNN model gets the most significant improvement in this
study (Figs. 10b,d,f). In contrast, the Taipei metro area is the
research area with the least mountains in this study. As shown
in Fig. 10, CNNs could improve the underestimation of R(Z)
in both the Taipei metro area and the Hualien area. But note
that, from the boxplot in the Hualien area (Fig. 10f), it is
clearly shown that CNNs have a smaller bias than R(Z) in
heavy rainfall events (about 35% improvement). In summary,
it is indicated that the upper-level information is important to
help the CNN model estimate the precipitation in complex
terrain, where radar beam blockage is a serious problem,
i.e., in Hualien.

4. Evaluation of the 2D QPE products

a. Independent station verification

Recall that the final goal is to produce 2D rain maps; it is thus
important to evaluate the performance of the gridded QPE
products (section 2d) at every grid point. As it is impossible to
have ground-truth observation everywhere, an improvising
way to verify the 2D QPE products is an evaluation based
on the 57 independent stations. This subsection evaluates the
performance of the nearest-station method, the three-stations-
blending method, and the R(Z) relation for the 57 independent
stations (Fig. 2, red stars), of which the data are not used for
training and validating the CNN cluster. If the rainfall at the in-
dependent stations can be accurately estimated, we can fairly
argue that rainfall estimates at each grid point are useable.

First, we compare the performance of these two gridded
QPE products (the nearest-station method and the three-
stations-blending method) for the independent stations with

FIG. 6. As in Fig. 5d, but for the rainfall estimates by the general model (red) and the pre-station models (gray) for stations
in (a) mountain areas and (b) plain areas. Note that this figure is based on the testing dataset.
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the CNN clusters’ performance for the 109 CNN training
stations (Fig. 2, blue dots). Note that this is not a homoge-
neous comparison, but it is important to realize if the qual-
ities of these two gridded QPE products and the CNN
clusters are comparable. If they have similar performance,
it could be concluded that the QPE is stable when the
CNN model is applied to the nearby area around the train-
ing station and increases confidence when we produce the
2D rain maps.

As shown in Fig. 11, both the nearest-station and the three-
stations-blending methods have shown consistent results with
the CNN cluster conducting QPE at the CNN training stations
(Figs. 11a,b). Although the three stations blending method
has the best performance for rainfall less than 50 mm h21

from the MAE and MAPE (Figs. 11c,d), it might underesti-
mate the hourly rainfall when the observation is greater than
50 mm h21, especially in plain areas. Note again that, com-
pared to the R(Z) relation with uneven performance in the

FIG. 7. Results of the CFAD sensitivity test for the
testing dataset. (left) Heat scatterplots of rainfall esti-
mates and observation as in Fig. 5c, but for models
with various input (CFAD) altitudes: (a) 0–2, (c) 0–8,
and (e) 0–17 km for stations in mountain areas. (right)
As in Fig. 5d, but for models with various input alti-
tudes for (b) all mountain areas and (d) all plain areas.
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mountain and plain areas (Fig. 10f), the CNNs can consider
the upper-level reflectivities to reduce the problem of radar
beam blockage and improve the QPE performance in the
mountains.

In summary, the statistical properties of errors for the two
gridded QPE products are comparable to each other and simi-
lar to that of the evaluations of the CNN models at the 109
training stations. Moreover, the nearest-station method is eas-
ier to operate and shows more possibilities to capture the
rainfall extremums for rainfall greater than 50 mm h21. The
results imply the feasibility of substituting the local CFAD
into a neighboring CNN model to estimate the local precipita-
tion. Therefore, we promote the nearest-station method for
producing the 2D rain maps.

b. Two case studies for visualization

This subsection selects two cases of daily rainfall for visual-
izing the QPE results (Fig. 12): 13 June and 8 October 2018.
In the first case, a stationary front was located in the southeast
of Taiwan, leading to the rainfall in eastern Taiwan. In the

second case, Taiwan was influenced by the northeast mon-
soon on 8 October 2018. These two cases are visualized by
four gridded QPE techniques: The Cressman interpolation
method based on 109 rain gauges (Figs. 12a,e) and 109 CNN
models (Figs. 12b,f), the R(Z) relation (Figs. 12c,h), and the
nearest-station method (Figs. 12d,g).

The Cressman method (section 2d) is used to interpolate
the 2D rain map based on the observation of the 109 training
stations (Figs. 12a,e), similar to the CWB official rain map.
Furthermore, we utilized the same Cressman setting to inte-
grate the QPEs based on the CNN cluster of these 109 sta-
tions (Figs. 12b,f). If the 109 sites CNN QPE (Figs. 12b,f) is
identical to the 109 sites observation (Figs. 12a,e), it can be
considered a perfect QPE.

As shown in the left four panels of Fig. 12, the 109 sites ob-
servation and the 109 sites CNN QPE visually exhibit compa-
rable rainfall distribution (Figs. 12a,b,e,f), except the local
maximum rainfalls of the 109 sites CNN QPE are higher
in southeastern Taiwan. Note that these four rain maps
(Figs. 12a,b,e,f) show circle patterns near the rain gauges,

FIG. 8. For the testing dataset, the scatterplots of precipitation estimates and observation as in Fig. 5c, but for sta-
tions in (a) mountain areas and (b) plain areas. (c),(d) As in (a) and (b), but for precipitation estimates by the R(Z)
relation.
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especially in areas where the rain gauge distribution is
sparse because the Cressman method uses an unreasonable
influence radius. Thus, we suggest that it is important to uti-
lize radar reflectivities at all grids efficiently, and this study
thus proposes the nearest-station method to generate the
2D rain maps.

Comparing the nearest-station method (Figs. 12d,h) and
the two Cressman methods (Figs. 12a,b,e,f), the nearest-
station method generates more small-scale weather features,
especially in complex terrain (Fig. 12, “A” and “B”). Note
again that using the neighboring CNN model, the nearest-

station method can reserve the characteristics of each grid
point’s information from CFADs and reflect these features on
the grid point’s precipitation. Therefore, the nearest-station
method significantly improves the overestimation of the R(Z)
relation (Figs. 12c,g), especially in complex terrain with seri-
ous radar beam blockage problems. Furthermore, as shown in
Fig. 12 (“C”), there is an obvious boundary close to the coast-
line of Hualien, and as seen in Fig. 2a, there are about 1.3-km
mountains in this region, so the R(Z) relation method cannot
accurately estimate the precipitation in the west side of the
mountains due to the problem of radar beam blockage.

FIG. 9. (top) As in Fig. 5d, but for the error distributions of CNN estimates (red) and R(Z) relation estimates (gray)
for testing samples in (a) mountain areas and (b) plain areas. The number and star above the box represent the
p value of the bootstrapping test and if the difference is significant. (middle) The MAPE for the CNN estimates and
R(Z) estimates in (c) mountain areas and (d) plain areas. The dots and the shading represent each rainfall bin’s mean
and interquartile range. (e),(f) As in (c) and (d), but for the MAE.
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5. Summary and future work

a. Summary

In Taiwan, accurate QPE is urged for preventing and moni-
toring meteorological disasters. Many dual-polarized meteo-
rological radars have been deployed recently, and numerous
QPE methods using dual-polarized parameters have been
proposed. However, the operational QPE techniques in
Taiwan (e.g., QPESUMS) can only provide accurate rain-
fall estimates in plain areas and suffer from two critical
issues. First, a single formula for individual radar is insufficient
for different regions and terrains. Second, in the complex ter-
rain area where beam blockage is a serious problem, using the
single-point lowest available radar reflectivity for QPE is risky
as the reflectivity may not reflect the near-ground raindrop
size.

Therefore, this paper proposes to use a cluster of CNN
models to construct 2D rain maps, hoping to establish better
relationships between “imperfect” radar observations and
“local” rainfall for various regions and terrains to address the
first issue. Moreover, rather than using the single-point lowest
available echo information, our deep learning QPE extracts
features from CFADs to account for the 3D structure of the
convective systems, addressing the second issue.

CNN models at existing rain gauges (i.e., CNN training sta-
tions) are trained in northern and eastern Taiwan based on the
3-yr data during 2015–17. To ensure the statistical consistency
of datasets for establishing CNN models, we divided 4 days as a
cycle to construct the training (days 1–3) and validation (day 4)
datasets and utilized the 2018 data as the testing dataset.
Furthermore, to solve the unbalanced-data problem for ex-
treme rainfall, there are two components (weighted MSE and

FIG. 10. Corresponding plots of Fig. 9 for mountain stations in (a),(c),(e) Taipei metro area and (b),(d),(f) Hualien area.
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classification over 20 mm) in the calculation of the CNN loss
function to increase the weights of heavy rainfall amount ($20
mm h21). Verification results based on the testing data from
CNN training stations (109 sites) show that the CNN QPE out-
performs the R(Z) relation, especially in the mountain area. For
example, our proposed QPE shows obvious improvement in the
Hualien area, where radar beam blockage is a serious problem.

Moreover, this study proposes two methods (i.e., the nearest-
station method and the three-stations blending method) to in-
corporate the CNN cluster (109 CNN models) for generating
2D rain maps. It is worth noting that an independent verifica-
tion dataset (i.e., 2018 data from 57 independent stations) is
used to confirm the accuracy of these gridded QPE products.
It is suggested that the 2D QPE is practical for operational
use, provides rainfall in the no-gauge area, and solves the

underestimation of the R(Z) relation in the mountains.
In addition, two case studies of 13 June and 8 October 2018
are presented to visualize the results. The CNN model gen-
erates better features of small-scale weather systems and
more accurate precipitation information and overcomes the
problem of traditional rainfall interpolation, which cannot
provide the flow-dependent influence radius. In summary, the
deep learning QPE proposed in this study effectively deals
with 3D radar data and learns the storm’s vertical structure
from CFADs, thus stably estimating the precipitation in com-
plex terrain. Although transitioning deep learning models
into operations is a tricky business, and better predictions do
not always lead to better decisions, we expect the proposed
method may be helpful for disaster prevention of small-scale
floods in the future.

FIG. 11. As in Fig. 9, the performance of rainfall estimation based on the testing and independent verification data-
sets are compared. The nearest-station method (red), the three-stations-blending method (blue), and original CNN
estimates based on the testing dataset (gray) are displayed.
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b. Limitations of the proposed method and
future direction

Although the CNN QPE improves the underestimation of
the current operational QPE in complex terrain, the proposed
CNN-QPE technique still has the limitation that negative
biases of extreme rainfall over 30 mm h21 exist (Figs. 9a,b,
negative bias with MAPE ’ 40%). Future works of using
deep learning for QPE should address this shortcoming. The
reason for underestimation is presumably because CFADs
only reflect the overall structure of the convective system and
somehow smooth out the extreme Z values. In addition, our
proposed method may have a similar problem to conventional
QPE of difficulty adjusting the weights to be suitable for vari-
ous weather systems.

Three S-band meteorological radars in Taiwan will be up-
graded to dual-polarized radars in 2022, and other C-band
dual-polarized radars are under construction. Future works
may apply this study’s idea for improving the CNN cluster’s
performance by using more input information, such as Kdp

and ZDR. Furthermore, other meteorological information could

be considered in the deep learning framework, including model
analysis of subsynoptic weather conditions, the vertical profile
of temperature and moisture, and the flow-lifting index on the
terrain slope. These approaches could be made with the aid of
specific deep learning techniques to integrate heterogeneous
data and are worth trying to improve the accuracy and practica-
bility of deep learning–based QPE techniques.
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(bottom) 8 Oct 2018. (a),(e) the Cressman interpolation of the 109 rain gauge observation at
training stations (“109-sites obs. Cressman”); (b),(f) the Cressman interpolation of the QPEs by
the CNN cluster of the 109 sites (“109-sites CNN Cressman”); (c),(g) the R(Z) relation by using
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